
ATC'23_Sponge:
Fast Reactive Scaling for Stream

Processing with Serverless Frameworks

2023/08/23

1

Background: Stream Processing

2

Bursty load

Bursty load

In
p

u
t
lo

a
d

(e
v
e
n
ts

/s
e
c
)

Input Events Stream Processing
Engine

Analytics

Output Stream

Outputs

Input rate > Max throughput

Bottleneck!

Stream Processing
• Query -> DAG
• Bursty Load -> Bottleneck

Background: On-Demand Resource Provisioning

3

VMs

Cluster

Input Events

Output Stream

Analytics

Outputs

Cluster

VMs VMs

Cluster

SFs

On-Demand Resource
• Virtual Machines (VM)
• Serverless Functions (SF)

Characteris
• Start-up time
• Usage cost

Start-up time: 25s+ Start-up time: 300-750ms

Usage cost：VM < SF

Background

4

Goal

• Quickly detect bursty loads

and reduce migration state

overhead.

Challenges

• Migration with large operator states.

• Indirect data communication between SF instances.

• Quick decision making and scaling.

Main Idea

5

Query

Sponge Compiler

DAG Optimizer

SF

RO
MOTO

Scheduler

VM

Monitoring

VMVM

Tasks

Event

queue

a

Sponge Runtime

c

f

b

e

d

• Redirect-and-merge
• Compile-time Graph

Rewriting Algorithm
• Reducing Cold Start Latency
• Watermark message

• Fast reactive scaling
• Dynamic Offloading Policy

Redirect-and-merge

6

• C1. Migration with large operator states.

• C2. Indirect data communication
between SF instances.

VMs SFs

State State State

StateState State

Design1: Compile-time Graph Rewriting Algorithm

7

Query

Sponge Compiler

DAG Optimizer

RO
MOTO

1. Router operators (ROs) enable redirection of input events to specific instances

2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

Design1: Compile-time Graph Rewriting Algorithm

8

Filter Sum

State

K1

K2

Filter SumROsum State

K1

K2
TOFilter TOSum

Filter SumROsum State

K1

State

K2

K2 Events

K1 Events

MOsum

TOFilter TOSum

Filter SumROsum State

K1

State

K2

K2 Events

K1 Events

MOsum

TOFilter TOSum

Filter Sum

State

K1

K2

ROsum

K2 Events

K1 Events

Design1: Compile-time Graph Rewriting Algorithm

9

SFs

Serverless Function BServerless Function A

• C2. Indirect data communication
between SF instances.
• SF <-> origin VM
• VM <-> VM

MOsum

TOFilter TOSum

Filter Sum

State

K1

K2

ROsum

K2 Events

K1 Events

Design2: Reducing Cold Start Latency

10

Managed runtimes (e.g., JVM) incur

launch overheads (~4 seconds)

Timely gain access to SFs
• Warm-up SF workers
• Cache snapshots of SFs

Design3: Watermark message

11

Correctness
• Watermark as control message
• All events are processed in the same environment

Fast reactive scaling

12

T
h

ro
u

g
h

p
u
t
(e

v
e
n
ts

/s
e
c
)

Time (t)

Costs saved
Bursty load

Over-provision case

Adaptive CPU usage

Input load

SFs

= ?

• C3. Quick decision making and scaling.
• describe when Sponge triggers offloading,

how many SF instances it uses

Design4: Dynamic Offloading Policy

13

Time (t)

max throughput 𝑚𝑖 𝑡

Input load rate 𝑟𝑖 𝑡

on VMs

T
h

ro
u

g
h

p
u
t
(e

v
e
n
ts

/s
e
c
)

Target max throughput 𝑚𝑖𝑜

𝐷𝑎𝑡𝑎 𝑝𝑖𝑙𝑒𝑑 𝑢𝑝 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑞𝑢𝑒𝑢𝑒 ≤ 𝐷𝑎𝑡𝑎 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑜𝑢𝑟 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒
(𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗ 𝑡𝑖𝑚𝑒 ≤ 𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗ 𝑡𝑖𝑚𝑒)

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑆𝐹 𝑐𝑜𝑟𝑒𝑠 =
𝑇𝑎𝑟𝑔𝑒𝑡 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

70% ∗ 𝐴𝑝𝑝𝑟𝑜𝑥. 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑝𝑒𝑟 𝑆𝐹 𝑐𝑜𝑟𝑒

SFs

= ?

Evaluation: Latency and CPU Utilizations

14

The 99th-percentile tail latency
and CPU utilization

Evaluation: Latency and CPU Utilizations

15

Input patterns

Evaluation: Graph Rewriting Effect

16

SFBase + RO + TO + MO + Warm-up

Evaluation: Latency-Cost Trade-Off

17

• Latency: 20-VMs > Sponge > 25-VMs
• Bursty duration < 15%

Paper Summary

18

Stream Processing

Bursty Load

• Redirect-and-merge
• Fast reactive scaling

Challenges Ideas

• Migration with large operator states.

• Indirect data communication between

SF instances.

• Quick decision making and scaling.

• Compile-time Graph

Rewriting Algorithm

• Reducing Cold Start Latency

• Watermark message

• Dynamic Offloading Policy

