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Background: Stream Processing 
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Bottleneck!

Stream Processing 
• Query -> DAG
• Bursty Load -> Bottleneck



Background: On-Demand Resource Provisioning
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On-Demand Resource 
• Virtual Machines (VM)
• Serverless Functions (SF)

Characteris
• Start-up time
• Usage cost

Start-up time: 25s+ Start-up time: 300-750ms

Usage cost：VM < SF



Background
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Goal

• Quickly detect bursty loads 

and reduce migration state 

overhead.

Challenges

• Migration with large operator states.

• Indirect data communication between SF instances.

• Quick decision making and scaling.



Main Idea
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• Redirect-and-merge
• Compile-time Graph 

Rewriting Algorithm
• Reducing Cold Start Latency
• Watermark message

• Fast reactive scaling
• Dynamic Offloading Policy



Redirect-and-merge
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• C1. Migration with large operator states.

• C2. Indirect data communication 
between SF instances.

VMs SFs

State State State

StateState State



Design1: Compile-time Graph Rewriting Algorithm
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1. Router operators (ROs) enable redirection of input events to specific instances

2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states



Design1: Compile-time Graph Rewriting Algorithm
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Design1: Compile-time Graph Rewriting Algorithm
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SFs

Serverless Function BServerless Function A

• C2. Indirect data communication 
between SF instances.
• SF <-> origin VM
• VM <-> VM
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Design2: Reducing Cold Start Latency
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Managed runtimes (e.g., JVM) incur

launch overheads (~4 seconds)

Timely gain access to SFs
• Warm-up SF workers
• Cache snapshots of SFs



Design3: Watermark message

11

Correctness
• Watermark as control message
• All events are processed in the same environment



Fast reactive scaling
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• C3. Quick decision making and scaling.
• describe when Sponge triggers offloading, 

how many SF instances it uses



Design4: Dynamic Offloading Policy
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Target max throughput 𝑚𝑖𝑜

𝐷𝑎𝑡𝑎 𝑝𝑖𝑙𝑒𝑑 𝑢𝑝 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑞𝑢𝑒𝑢𝑒 ≤ 𝐷𝑎𝑡𝑎 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑜𝑢𝑟 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒
(𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗ 𝑡𝑖𝑚𝑒 ≤ 𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗ 𝑡𝑖𝑚𝑒)

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑆𝐹 𝑐𝑜𝑟𝑒𝑠 =
𝑇𝑎𝑟𝑔𝑒𝑡 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

70% ∗ 𝐴𝑝𝑝𝑟𝑜𝑥. 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑝𝑒𝑟 𝑆𝐹 𝑐𝑜𝑟𝑒

SFs

# = ?



Evaluation: Latency and CPU Utilizations
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The 99th-percentile tail latency 
and CPU utilization



Evaluation: Latency and CPU Utilizations
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Input patterns



Evaluation: Graph Rewriting Effect
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SFBase + RO + TO + MO + Warm-up



Evaluation: Latency-Cost Trade-Off
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• Latency: 20-VMs > Sponge > 25-VMs
• Bursty duration < 15%



Paper Summary
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Stream Processing

Bursty Load

• Redirect-and-merge
• Fast reactive scaling

Challenges Ideas

• Migration with large operator states.

• Indirect data communication between 

SF instances.

• Quick decision making and scaling.

• Compile-time Graph 

Rewriting Algorithm

• Reducing Cold Start Latency

• Watermark message

• Dynamic Offloading Policy


