
EdgeWise: A Better Stream Processing
Engine for the Edge

Xinwei Fu, Talha Ghaffar, James C. Davis, and Dongyoon Lee,
Virginia Tech

ATC’19 2023/05/03

1

Background : Stream Processing

2

• Dataflow Programming Model
• IoT(Things, Gateways and Cloud)

• Stream Processing Engines
• deploys the operations onto the

compute node

Running on PI

Modern SPEs based on : OWPOA

3

Topology
0 1

3

2

OWPOA

Worker 0
Q0

operation 0

Worker 1
Q1

operation 1

Worker 2
Q2

Worker 3
Q3

operation 3

operation 2

src

sink

sink

• One-Worker-per-Operation-
Architecture(OWPOA)
• Queue and Worker thread
• Pipelined manner
• Backpressure

Problem : OWPOA SPEs

4

• OWPOA SPEs
• Cloud-class resources
• OS scheduler

• Edge SPEs
• Limited resources
• workers >> CPU cores
• Inefficiency in OS scheduler

• database community study
• Min-Latency, VLDB’03, Carney et al
• Min-Memory, VLDB’04, Babcock et al

• Existing OWPOA Stream Processing Engines are not suitable
for the Edge Setting

Main idea & Challenges

5

Topology
0 1

3

2• Main idea
• a new scheduling algorithm

supported by a new queuing-
theoretic analysis

• Challenges
• × Multiplexed
• × High Throughput
• × Low Latency
• × No Backpressure
• × Scalable

OWPOA

Worker 0
Q0

operation 0

Worker 1
Q1

operation 1

Worker 2
Q2

Worker 3
Q3

operation 3

operation 2

src

sink

sink

EDGEWISE DESIGN

6

• Inefficiency in OS scheduler
 Engine-level scheduler

• Limited resources
• workers >> CPU cores
 A fixed-sized worker pool

EdgeWise

operation 1

operation 3

Q0

Q1

Q2

Q3

worker pool
(fixed-size workers)

scheduler

Topology
0 1

3

2

OWPOA

Worker 0
Q0

operation 0

Worker 1
Q1

operation 1

Worker 2
Q2

Worker 3
Q3

operation 3

operation 2

Design : Fixed-size Worker Pool

7

EdgeWise

operation 1

operation 3 sink

src Q0

Q1

Q2

Q3

worker pool
(fixed-size workers)

scheduler

Topology
0 1

3

2
• Limited resources
• workers >> CPU cores
 A fixed-sized worker pool

• A fixed set of workers in the worker
pool

• The scheduler dynamically chooses
which operation a worker should
perform

√ Multiplexed

Design : Congestion-Aware Scheduler

8

Congestion-Aware Scheduler
• Profiling-free dynamic solution
• Balance queue sizes
• Choose the OP with the most

pending data

• Inefficiency in OS scheduler
 Engine-level scheduler

scheduler

operation 1

operation 3

operation 1

operation 3

Q1

Q3

Q3

Q1

Design : Congestion-Aware Scheduler

9

OWPOA – Random OS Scheduler

processing

de-scheduled

Idle(empty Q)

Q0

Q1

OP0

OP1

time

12

3

Q0

Q1

OP0

OP1

time

2

3

1

Q0

Q1

OP0

OP1

time

2 1

3

• The random scheduler of the OWPOA may make the unwise choice

Design : Congestion-Aware Scheduler

10

OWPOA – Random OS Scheduler

1

Q0

Q1

OP0

OP1

time

2 1

3

3

4

4

1

Q0

Q1

OP0

OP1

time

2 1

3

3

4

Q0

Q1

OP0

OP1

time

2 1

3

3

Backpressure

Q0

Q1

OP0

OP1

time

2 1

3

3 1

#

1

Q0

Q1

OP0

OP1

time

2 1

3

3

4 #

Design : Congestion-Aware Scheduler

11

EdgeWise – Congestion-Aware Scheduler

Q0

Q1

OP0

OP1

time

12

3 Q0

Q1

OP0

OP1

time

2

3

1

Q0

Q1

OP0

OP1

time

3

1 2

Q0

Q1

OP0

OP1

time

3

1 2

4

Q0

Q1

OP0

OP1

time

4

1 2

3

#

Q0

Q1

OP0

OP1

time

4

1 2

3

#3

√ No Backpressure

Design : Congestion-Aware Scheduler

12

1

Q0

Q1

OP0

OP1

time

2 1

3

3

4

4

Backpressure
OWPOA – Random OS Scheduler

Q0

Q1

OP0

OP1

time

4

1 2

3

#3

• The random scheduler of the
OWPOA may lead to backpressure
(high latency)

• EDGEWISE evens out the queue
lengths to avoid backpressure

• Inefficiency in OS scheduler
 Engine-level scheduler

√ Low Latency
√ No Backpressure

Performance Analysis : Higher Throughput

13

Maximum end-to-end throughput depends on scheduling heavier
operations proportionally more than lighter operations

Input rate Service rate Utilization

Scheduling weight Effective service rate

Stable constraint

==>>

==>>

scheduling weight -> input rate / service rate

√ High Throughput

Performance Analysis : Lower Latency

14

The balancing queue lengths leads to an overall improvement in latency

End-to-end latency

Per-operation latency

Queueing time – waiting in the queue
(using exponential distribution)

Performance Analysis : Lower Latency

15

The balancing queue lengths leads to an overall improvement in latency

End-to-end latency

Per-operation latency

Queueing time – waiting in the queue
(using exponential distribution)

Evaluation : Throughput-Latency Performance

Edge Stream Processing

Running on PI

16

• The engine-level schedulers in effect push the
backpressure point to a higher input rate,
allowing the SPEs to achieve higher throughput
at a low latency

Evaluation : Detailed Performance Breakdown

17

Even at the cost of increased queuing times at lighter operations,
would obtain an outsized improvement in latency.

Data Consumption Policy & Performance on Distributed Edge

18√ Scalable

EDGEWISE’s intra-node optimizations
benefit an internode (distributed)
workload.

The constant consumption rules
consistently performed well.

At-most-50 data consumption policy

Summary

19

Problem Existing OWPOA SPEs are not suitable
for the Edge Setting

dessign fixed-sized worker pool Engine-level scheduler

main idea a new scheduling algorithm supported by a
new queuing-theoretic analysis

About

20

• Why choose
• Terminal to edge

• Help
• Diversity of edge nodes

