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Background : Stream Processing
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• Dataflow Programming Model
• IoT(Things, Gateways and Cloud)

• Stream Processing Engines
• deploys the operations onto the 

compute node

Running on PI



Modern SPEs based on : OWPOA
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• One-Worker-per-Operation-
Architecture(OWPOA)
• Queue and Worker thread 
• Pipelined manner
• Backpressure 



Problem : OWPOA SPEs 
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• OWPOA SPEs 
• Cloud-class resources
• OS scheduler

• Edge SPEs 
• Limited resources
• workers >> CPU cores
• Inefficiency in OS scheduler

• database community study
• Min-Latency, VLDB’03, Carney et al
• Min-Memory, VLDB’04, Babcock et al

• Existing OWPOA Stream Processing Engines are not suitable 
for the Edge Setting



Main idea & Challenges
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2• Main idea
• a new scheduling algorithm 

supported by a new queuing-
theoretic analysis

• Challenges
• × Multiplexed
• × High Throughput
• × Low Latency
• × No Backpressure
• × Scalable

OWPOA

Worker 0
Q0

operation 0

Worker 1
Q1

operation 1

Worker 2
Q2

Worker 3
Q3

operation 3

operation 2

src

sink

sink



EDGEWISE DESIGN
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• Inefficiency in OS scheduler
 Engine-level scheduler

• Limited resources
• workers >> CPU cores
 A fixed-sized worker pool
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Design : Fixed-size Worker Pool
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• Limited resources
• workers >> CPU cores
 A fixed-sized worker pool

• A fixed set of workers in the worker 
pool

• The scheduler dynamically chooses 
which operation a worker should 
perform

√ Multiplexed



Design : Congestion-Aware Scheduler
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Congestion-Aware Scheduler
• Profiling-free dynamic solution
• Balance queue sizes
• Choose  the OP with the most 

pending data

• Inefficiency in OS scheduler
 Engine-level scheduler
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Design : Congestion-Aware Scheduler
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OWPOA – Random OS Scheduler
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• The random scheduler of the OWPOA may make the unwise choice



Design : Congestion-Aware Scheduler
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OWPOA – Random OS Scheduler
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Design : Congestion-Aware Scheduler
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EdgeWise – Congestion-Aware Scheduler
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√ No Backpressure



Design : Congestion-Aware Scheduler
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OWPOA – Random OS Scheduler
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• The random scheduler of the 
OWPOA may lead to backpressure 
(high latency)

• EDGEWISE evens out the queue 
lengths to avoid backpressure

• Inefficiency in OS scheduler
 Engine-level scheduler

√ Low Latency
√ No Backpressure



Performance Analysis : Higher Throughput
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Maximum end-to-end throughput depends on scheduling heavier 
operations proportionally more than lighter operations

Input rate Service rate Utilization

Scheduling weight Effective service rate

Stable constraint

==>>

==>>

scheduling weight   ->  input rate  /  service rate

√ High Throughput



Performance Analysis : Lower Latency

14

The balancing queue lengths leads to an overall improvement in latency

End-to-end latency

Per-operation latency

Queueing time – waiting in the queue
(using exponential distribution)



Performance Analysis : Lower Latency
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The balancing queue lengths leads to an overall improvement in latency

End-to-end latency

Per-operation latency

Queueing time – waiting in the queue
(using exponential distribution)



Evaluation : Throughput-Latency Performance

Edge Stream Processing

Running on PI

16

• The engine-level schedulers in effect push the 
backpressure point to a higher input rate, 
allowing the SPEs to achieve higher throughput 
at a low latency



Evaluation : Detailed Performance Breakdown
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Even at the cost of increased queuing times at lighter operations, 
would obtain an outsized improvement in latency.



Data Consumption Policy & Performance on Distributed Edge

18√ Scalable

EDGEWISE’s intra-node optimizations 
benefit an internode (distributed) 
workload.

The constant consumption rules 
consistently performed well.

At-most-50 data consumption policy 



Summary
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Problem Existing OWPOA SPEs are not suitable 
for the Edge Setting

dessign fixed-sized worker pool Engine-level scheduler

main idea a new scheduling algorithm supported by a 
new queuing-theoretic analysis



About
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• Why choose
• Terminal to edge

• Help
• Diversity of edge nodes


