
InftyDedup: Scalable and Cost-Effective
Cloud Tiering with Deduplication

Iwona Kotlarska, Andrzej Jackowski, Krzysztof Lichota, Michal Welnicki, Cezary
Dubnicki, Konrad Iwanicki

FAST’23 2023/04/05

1

Background

• Cloud-based backups
• use tiering techniques to move colder

data from the local to the cloud
• backups contain a lot of duplicated data

• Deduplication
• avoid writing the same data twice
• reduce storage capacity

data

local cloud

A B C

Add new file C

A B C

deduplication

duplicated data

need chunks
9 → 7

• Problem
• Scalable and Cost-Effective

Cloud Tiering with
Deduplication

Problem & Challenge

3

• Chanllenges :
1. deduplication is mainly

implemented at the local
teir and lacks scalability
due to resource limitations
at the local teir

2. the financial cost of storing
deduplication data in
cloud teir

Approach

4

1. InftyDedup, a novel system for
cloud tiering with deduplication

batch operation in the cloud

2. An algorithm for decreasing
the financial cost of storing
deduplicated data in the cloud
tier

hot cold

balance the cost

InftyDedup Architecture

5Local Tier

Cloud Tier

A B

Garbage Collection

Batch Processing

Deduplication

Batch Processing

C D

1. InftyDedup, a novel system
for cloud tiering with
deduplication

• HOW : implement
BatchDedup and BatchGC
using the cloud infrastructure

• WHY : performance scales
linearly with the number of
cloud instances deployed

Persistent

Metadata

Containers with

Deduplicated data

InftyDedup Architecture: Batch Deduplication

6Local Tier

Cloud Tier

A B

Garbage Collection

Batch Processing

Deduplication

Batch Processing

C D

Persistent

Metadata

• Batch Deduplication is a
distributed method of data
deduplication in the cloud
• creatively deploy multiple

cloud instances and
• each instance processes

fingerprints in a distributed
manner for linear scalability

Containers with

Deduplicated data

InftyDedup Architecture: Batch Deduplication Steps

7

Local Tier

Cloud Tier

A B

BatchDedup

Step 1

C D

 UFR 

Step #1: UFR processing
local : upload UFR(Unprocessed File Recipe)
cloud : find non-duplicate blocks

E

FingIdx UFRB UFRD

UFR processing

BLOCKS TO UPLOAD
(METADATA)



Local Tier

Cloud Tier

A B

BatchDedup

Step 2

C D

Step #2: Container generation
cloud : generate descriptions for the local tier

E

Container generation 

InftyDedup Architecture: Batch Deduplication Steps

8

Local Tier

Cloud Tier

A B

BatchDedup

Step 3

C D

Step #3: PFR update
local : cloud : update PFR(Processed File Recipe)

E

Local Tier

Cloud Tier

A B

BatchDedup

Step 4

C D

Step #4: Blocks upload
cloud : send description
local : upload the actual data

PFR
update

E D B


  

E D B

InftyDedup Architecture: Batch Garbage Collection

9Local Tier

Cloud Tier

A B

Garbage Collection

Batch Processing

Deduplication

Batch Processing

C D

Persistent

Metadata

• BatchGC is an incremental
contribution over the
traditional mark and sweep
• creatively take the financial

cost of container rewriting
into account and

• rewrite only if the rewriting
cost is lower than not
rewriting

Containers with

Deduplicated data

InftyDedup Architecture: Batch Garbage Collection Steps

10

Local Tier

Cloud Tier

A B

BatchGC

Step 1

C D

Step #1: File removal
mark live blocks

Local Tier

Cloud Tier

A B

BatchGC

Step 2

C D

Step #2: Container verification
select containers

E D B E D E Dmark live
blocks

select
containers



InftyDedup Architecture: Batch Garbage Collection Steps

11

Local Tier

Cloud Tier

A B

BatchGC

Step 3

C D

Step #3: Metadata are updated
update metadata

Local Tier

Cloud Tier

A B

BatchGC

Step 4

C D

Step #4: Containers are rewritten
rewrite containers

E Dupdate
metadata

rewrite
containers

 
E D

InftyDedup Architecture: Batch Garbage Collection Strategies

12

• Immediate removal of unreferenced data is not
always optimal, as rewriting a container in the
cloud has a significant cost.
• GC-Strategy #1: Reclaim only empty containers
• GC-Strategy #2: Reclaim containers if the rewrite

pays for itself after Tdays

• GC-Strategy #3: Reclaim containers based on file
expiration dates
• if UFR provides EXPtime, for each container, Tdays can be

calculated as the maximal EXPtime of its blocks

Tdays

EXPtime

balance the cost

InftyDedup : Mixing Storage Classes

13

To reduce the cost of storing data in the cloud, InftyDedup can be
extended with an algorithm that selects whether a block should be
stored in hot or cold cloud storage.

hot cold

balance the cost

+ Cheaper PUT/GET requests

+ No minimal storage period

+ No transfer fees

(other than egress traffic)

–Higher GB/month costs

+ Lower GB/month costs

(e.g., 5.25 times)

– Minimal storage period

(e.g., 90-365 days)

– Additional transfer fees

– More expensive

requests (e.g., 25 times)

InftyDedup : Mixing Storage Classes

14

2. An algorithm for decreasing the financial cost
of storing deduplicated data in the cloud tier

• HOW : move deduplicated data chunks between
cloud services dedicated to hot and cold storage
according to FREQrestore and EXPtime

• WHY :
• recovery time : many cold storage services

offer the same millisecond latency as hot
storage

• financial cost : mixing cloud storage types can
reduce costs

hot cold

balance the cost

FREQrestore

EXPtime

Move？

InftyDedup : Mixing Storage Classes

15

• Each block is stored in a storage type for which the following
formula has lower value

UFR 2 5 6

• Adjustments to FREQrestore and
EXPtime are required
• e.g., a block can be initially

stored in cold storage but later
it receives more references

1 3 4 5 7FingIdx

5 6

2

Containers

• BatchGC will eventually remove the
unnecessary copies
• e.g., when a reference with high

restore frequency has been deleted

4 5 6

2 3 5

5

2

4 6

3 5

Containers to
be written

New containers

Suitable for
cold storage

Suitable for
hot storage

without live
references

Evaluation : BatchDedup & BatchGC

16

• For BatchDedup, From deploying 8
instances to 64 instances, the amount
of data processed increased linearly,
but the processing time remained
roughly the same, demonstrating the
scalability of the system.

• initial step, files
without duplicates

• incremental step,
3xsmaller, 90% are
duplicates

• For BatchGC, strategy 3(costBased)
achieves the best result.

• Strategy 1 : onlyEmpty
• Strategy 2 : less than xx

is live
• Strategy 3 : costBased

Evaluation : Mixing Storage Classes

17

• Mixing cold and hot storage reduces the costs
for all three major providers

Different Public Clouds

Conclusion

18

• InftyDedup, a novel system for cloud tiering with deduplication
• solves the resource limitation of the local teir and insufficient

scalability
• An algorithm for decreasing the financial cost of storing

deduplicated data in the cloud tier
• mixing cloud storage types can reduce costs

