
FarReach:
Write-back Caching in Programmable Switches

USENIX ATC’23

1

2022.08.09

FarReach: Write-back Caching in Programmable Switches

2

USENIX ATC’23

Key-Value Store

Background

Widely deployed in modern data centers to manage structured data (in units of records)
for data-intensive applications.

Current Features:
• Writes dominate in production key-value storage workloads
• Write-intensive workloads are skewed

…

Client ServerSwitch

+ cache

FarReach: Write-back Caching in Programmable Switches

3

USENIX ATC’23

Programmable Switches

Background

Allow network operators to dictate packet routing and handling

Switch OS

Controller

Ingress
ports

egress
ports

Ingress pipelines egress pipelines
Traffic

Manager

Control Plane
Data Plane

Data Plane
• Process packets according to predefined rules and

procedures and forward them to their next destination

Control Plane
• Sets forwarding rules for the data plane
• Provide high-level control and manage overall

network policies, routing algorithms, and other
administrative tasks

Programmable Switch

Ingress/Egress Pipeline

FarReach: Write-back Caching in Programmable Switches

4

USENIX ATC’23

Programmable Switches

Background

Feasible to intercept I/O requests for some servers
and provide stateful memory for caching records

Switch OS

Controller

Ingress
ports

egress
ports

Ingress pipelines egress pipelines
Traffic

Manager

Control Plane
Data Plane

However, existing in-switch caching approaches
mainly implement write-through caching
• Target read-intensive workloads
• Provide low write performance gains under

skewed write-intensive workloads
…

Client ServerSwitch
+ cache

FarReach: Write-back Caching in Programmable Switches

5

USENIX ATC’23

Background

Goal
To explore in-switch write-back caching, as it offers the potential to improve write
performance over write-through caching by delaying server-side updates

Challenges
• Performance challenge: Limit switch resources require offloading management to a

controller, which may cause high controller-to-switch latency.
• Availability challenge: Without proper synchronization between in-switch cache and

server-side storage, the latest records may become unavailable to clients.
• Reliability challenge: Fault tolerance mechanism is required to avoid in-cache data loss

during switch failures.

FarReach: Write-back Caching in Programmable Switches

6

USENIX ATC’23

FarReach

Architecture Overview

A fast, available and reliable in-switch write-back cache architecture
• Clients are connected via the in-switch cache to multiple servers for key-value storage
• Controller performs cache management through switch OS

Client

Server

Switch OS

In-switch
Cache

ServerCache Misses

Cache Hits

Controller
Cache ManagementControl

Plane

Data
Plane

Server

…Client

…

Client Programmable
Switch

Key-value
Stores

FarReach: Write-back Caching in Programmable Switches

7

USENIX ATC’23

Main Idea

• Fast access: Non-blocking cache admission

• Availability: Available cache eviction

• Reliability: Crash-consistent snapshot generation

Client

Server

Switch OS

In-switch
Cache

ServerCache Misses

Cache Hits

Controller
Cache ManagementControl

Plane

Data
Plane

Server

…Client

…

Client Programmable
Switch

Key-value
Stores

FarReach: Write-back Caching in Programmable Switches

8

USENIX ATC’23

Problems

Design 1 : Non-blocking cache admission

Subsequent writes arrive at switch before cache admission
• Blocking subsequent writes undermines I/O performance
• Absorbing subsequent writes in switch undermines availability

Client

Server

Switch OS

In-switch
Cache

ServerCache Misses

Cache Hits

Controller
Cache ManagementControl

Plane

Data
Plane

Server

…Client

…

Client Programmable
Switch

Key-value
Stores

FarReach: Write-back Caching in Programmable Switches

9

USENIX ATC’23

Before cache admission

Design 1 : Non-blocking cache admission

① Switch tracks record key frequencies with CM Sketch, identifying hot keys
② If record R is hot and uncached, switch forwards it to server
③ Server updates storage, forwards record to controller for cache admission

Switch OS

Controller

Programmable Switch

Client ServerCount-Min
Sketch

In-switch
Cache

write missR
hot

①

②

③ send R

FarReach: Write-back Caching in Programmable Switches

10

USENIX ATC’23

Before cache admission

Design 1 : Non-blocking cache admission

① Switch tracks record key frequencies with CM Sketch, identifying hot keys
② If record R is hot and uncached, switch forwards it to server
③ Server updates storage, forwards record to controller for cache admission
④ Switch forwards subsequent same R’s key writes to server during cache admission wait

Switch OS

Controller

Programmable Switch

Client ServerCount-Min
Sketch

In-switch
Cache

④ Subsequent Writes

FarReach: Write-back Caching in Programmable Switches

11

USENIX ATC’23

After cache admission

Design 1 : Non-blocking cache admission

① Controller marks admitted R as “outdated”
② For any read requests to “outdated” key, switch conservatively forwards to server
③ Switch marks “outdated” R as “latest” if : (a) server read response for same key
 (b) client write request for same key

Controller

Programmable Switch

Client ServerIn-switch
Cache

Switch OS

① Admit R “outdated”

② Conservative reads

Write R
“latest”

③ Read R
“latest”

③

FarReach: Write-back Caching in Programmable Switches

12

USENIX ATC’23

Design 2 : Available cache eviction

Problems
Subsequent writes arrive at switch during cache eviction
• Processing without synchronization undermines availability
• Synchronization by controller incurs large overhead

Client

Server

Switch OS

In-switch
Cache

ServerCache Misses

Cache Hits

Controller
Cache ManagementControl

Plane

Data
Plane

Server

…Client

…

Client Programmable
Switch

Key-value
Stores

FarReach: Write-back Caching in Programmable Switches

13

USENIX ATC’23

Design 2 : Available cache eviction

Controller

Programmable Switch

Client Server

Cache eviction main workflow

Read R

Write R

Count-Min
Sketch

In-switch Cache

R→(“to-be-evicted”, seq)

② Load R ③ Send R

Switch OS
④ Evict R

① Select R

① If in-switch cache is full, switch selects least accessed record R to evict
② Controller loads R, which is marked “to-be-evicted” in in-switch cache
③ Controller sends R to server for storage
④ After server has stored latest “to-be-evicted” R, controller acknowledge cache to evict R

FarReach: Write-back Caching in Programmable Switches

14

USENIX ATC’23

Design 2 : Available cache eviction

Controller

Programmable Switch

Client Server

For any write request to R after ③ before ④
Switch : forwards request to server, marks R as “outdated”
Server :
• If sequence number of received R > existing R: overwrites existing R
• If sequence number of received R < existing R: discards received R

Read R

Write R

Count-Min
Sketch

In-switch Cache

R→(“to-be-evicted”, seq)

② Load R ③ Send R

Switch OS
④ Evict R

① Select R

FarReach: Write-back Caching in Programmable Switches

15

USENIX ATC’23

Design 2 : Available cache eviction

Controller

Programmable Switch

Client Server

For any read request to R after ③ before ④
Switch :

Read R

Write R

Count-Min
Sketch

In-switch Cache

R→(“to-be-evicted”, seq)

② Load R ③ Send R

Switch OS
④ Evict R

① Select R

Server :

• If R is “latest”: returns R to client
• If R is “outdated”: embeds "outdated" R, forwards to server
• If sequence number of embed R > existing R: overwrites with embed R and returns it
• If sequence number of embed R < existing R: returns existing R to client

FarReach: Write-back Caching in Programmable Switches

16

USENIX ATC’23

Design 3 : Crash-consistent snapshot generation

Problems
Subsequent writes arrive at switch during snapshot generation
• Updating cache records incurs inconsistent snapshots

Client

Server

Switch OS

In-switch
Cache

ServerCache Misses

Cache Hits

Controller
Cache ManagementControl

Plane

Data
Plane

Server

…Client

…

Client Programmable
Switch

Key-value
Stores

FarReach: Write-back Caching in Programmable Switches

17

USENIX ATC’23

Design 3 : Crash-consistent snapshot generation

Controller

Programmable Switch

Client ServerIn-switch
Cache

① Trigger
Snapshot
generation

② Write R

② Send
Original R

③ Load
Records

Switch OS

Triggering Snapshot Generation
① At regular time points, controller notifies switch to trigger snapshot generation.
② On first write to cached R during snapshot, switch sends original R to controller.

Making a consistent snapshot
③ Controller loads all cached records for snapshot
generation
④ Controller updates snapshot :
• Overwritten record: reverts with original one
• New post-snapshot admission: not included
• Post-snapshot eviction: replaces with saved evicted record

FarReach: Write-back Caching in Programmable Switches

18

USENIX ATC’23

Design 3 : Crash-consistent snapshot generation

Zero-loss crash recovery
Client-side record preservation – after latest snapshot point
• After sending write request and receiving response, client keeps value and seq locally
• After completion of snapshot generation, clients release preserved records with seq no larger than

those notified

Replay-based approach – after a switch failure
① Server collects latest snapshot and client-side records, selects record with largest seq per key.
② If seq of selected record is larger, server replays write request for persistent storage.
③ After persisting latest records, clients release preserved records.
④ In-switch cache recovered by replaying cache admission from latest snapshot, marks each

record as “outdated”.

19

Evaluation

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Performance under YCSB Workloads

Throughput analysis Scalability analysis

FarReach scales to a large number of servers
under skewed write-intensive workloads.

FarReach achieves higher throughput
gains over NoCache and NetCache for
most workloads

20

Evaluation

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Performance under Synthetic Workloads

Impact of write ratio Impact of key popularity changes

FarReach achieves higher throughput
gains over NoCache and NetCache for
more write-intensive workloads

FarReach quickly reacts to the key popularity
changes, so it maintains the cache hit rate and
hence the average throughput.

21

Evaluation

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Snapshot Generation and Crash Recovery

Performance of snapshot generation Crash recovery time

Snapshot generation has a limited impact
on throughput for various snapshot periods
under different dynamic patterns

Crash recovery time is within 2.35 s
for various in-switch cache sizes

22

Paper Summary

Key-Value Store

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Write-intensive

Skewed workload

In-switch CacheWrite-through

Write-back

Challenges Ideas

Performance

Availability

Reliability

Non-blocking cache admission

Available cache eviction

Crash-consistent snapshot generation

Problems

Subsequent request
arrive at switch
at each stage

Features

more❌

