FarReach:

Write-back Caching in Programmable Switches

USENIX ATC’23

2022.08.09

Background

Key-Value Store

Widely deployed in modern data centers to manage structured data (in units of records)

for data-intensive applications.

Current Features:

* Writes dominate in production key-value storage workloads
* Write-intensive workloads are skewed

" -
e >

Client Switch Server

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Background

Programmable Switches

Allow network operators to dictate packet routing and handling Contf"o”er
7
* Process packets according to predefined rules and DEIE P'a’;‘* _
procedures and forward them to their next destination | ingress = egress
ports — ports

— —

Control Plane = Traffic C
Ingress pipelines \janager egress pipelines

* Sets forwarding rules for the data plane
Programmable Switch

* Provide high-level control and manage overall

network policies, routing algorithms, and other

¥ | PHV

Stage 1
¥ | PHV

Stage 2
¥ | PHV

Stage 3
¥ | PHV

Packet
Packet

Stage S
Deparser
¥

4
Parser

administrative tasks

Ingress/Egress Pipeline

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Background

Programmable Switches

Controller
L)

Feasible to intercept I/O requests for some servers | control Plane Switch OS

and provide stateful memory for caching records LIz P'a;* _
—J [

Ingress T — egress

ports — ports
However, existing in-switch caching approaches = Traffic =

Ingress pipelines Manager e€gress pipelines

mainly implement write-through caching

-
-
-
-
-
-
-
-
-

* Target read-intensive workloads

* Provide low write performance gains under

skewed write-intensive workloads —)
+ cache
Client Switch Server

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Background

Goal

To explore in-switch write-back caching, as it offers the potential to improve write

performance over write-through caching by delaying server-side updates

Challenges

Performance challenge: Limit switch resources require offloading management to a
controller, which may cause high controller-to-switch latency.

Availability challenge: Without proper synchronization between in-switch cache and
server-side storage, the latest records may become unavailable to clients.

Reliability challenge: Fault tolerance mechanism is required to avoid in-cache data loss

during switch failures.

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Architecture Overview

FarReach

A fast, available and reliable in-switch write-back cache architecture
* Clients are connected via the in-switch cache to multiple servers for key-value storage

* Controller performs cache management through switch OS

Controller
Control 1 Cache Management
Plane Switch 0S
Data Client |, Cache Misses | I n-switch |¢_ Server
' 4 : » Cache Key-value

Plane Client Cache Hits Ser\.ler Sorod

Client Programmable Server

Switch

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Main Idea

* Fast access: Non-blocking cache admission
* Availability: Available cache eviction

* Reliability: Crash-consistent snapshot generation

Controller
Control 1 Cache Management
Plane Switch OS
St Client |, Cache Misses J| n-switch | Server
i 4 : » Cache Key-value
Plane Client Cache Hits Ser\./er Corod
Client Programmable Server
Switch

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Design 1 : Non-blocking cache admission

Problems

Subsequent writes arrive at switch before cache admission
* Blocking subsequent writes undermines I/O performance

* Absorbing subsequent writes in switch undermines availability

Controller
Control 1 Cache Management
Plane Switch OS
St Client |, Cache Misses J| n-switch | Server
i 4 : » Cache Key-value
Plane Client Cache Hits Ser\./er Corod
Client Programmable Server
Switch

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Design 1 : Non-blocking cache admission

Before cache admission

(D Switch tracks record key frequencies with CM Sketch, identifying hot keys
@ Ifrecord R is hot and uncached, switch forwards it to server

@ Server updates storage, forwards record to controller for cache admission

Controller
® send R

Switch OS

write R ©) miss‘ ‘

1 4 - o i’

Client Vi hot@ In-switch S
Count-Min Cache
Sketch

Programmable Switch

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Design 1 : Non-blocking cache admission

Before cache admission

(D Switch tracks record key frequencies with CM Sketch, identifying hot keys
@ Ifrecord R is hot and uncached, switch forwards it to server
@ Server updates storage, forwards record to controller for cache admission

@ Switch forwards subsequent same R’s key writes to server during cache admission wait

Controller
Switch OS
(@®|Subsequent Writes
: _ .
Client v In-switch Server
Count-Min Cache
Sketch

Programmable Switch

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Design 1 : Non-blocking cache admission

After cache admission
(1) Controller marks admitted R as “outdated”

(@ For any read requests to “outdated” key, switch conservatively forwards to server
@ Switch marks “outdated” R as “latest” if : (a) server read response for same key

(b) client write request for same key

Controller
O Admit R “outdated”
Switch OS
2 |Conservative reads ‘
Client @ Write R In-switch Read R Server
“latest” R | “latest”
* Cache [

Programmable Switch

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Design 2 : Available cache eviction

Problems

Subsequent writes arrive at switch during cache eviction
* Processing without synchronization undermines availability

* Synchronization by controller incurs large overhead

Controller
Control 1 Cache Management
Plane Switch OS
St Client |, Cache Misses J| n-switch | Server
i 4 : » Cache Key-value
Plane Client Cache Hits Ser\./er Corod
Client Programmable Server
Switch

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Design 2 : Available cache eviction

Cache eviction main workflow

() If in-switch cache is full, switch selects least accessed record R to evict
(@) Controller loads R, which is marked “to-be-evicted” in in-switch cache
@ Controller sends R to server for storage

@ After server has stored latest “to-be-evicted” R, controller acknowledge cache to evict R

Controller
@ LoadR| |@ EvictR @) Send R
Switch OS
Read R @ Select R :
: f g Ré(”t . ”
_ . | H o-be-evicted”, seq)
Client | Write R S »[Server
"l |
Count-Min In-switch Cache
Sketch

Programmable Switch

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Design 2 : Available cache eviction

For any write request to R after @ before @
Switch : forwards request to server, marks R as “outdated”
Server :

* If sequence number of received R > existing R: overwrites existing R

* If sequence number of received R < existing R: discards received R

Controller
@ LoadR| |@ EvictR @) Send R
Switch OS
Read R @ Select R :
: f g Ré(”t . ”
_ . | H o-be-evicted”, seq)
Client | Write R S »[Server
"l |
Count-Min In-switch Cache
Sketch

Programmable Switch

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Design 2 : Available cache eviction

For any read request to R after @ before @
Switch : « [fR is “latest” returns R to client
e IfR 1s “outdated”: embeds "outdated" R, forwards to server
Server : « If sequence number of embed R > existing R: overwrites with embed R and returns it

» If sequence number of embed R < existing R: returns existing R to client

Controller
@ LoadR| |@ EvictR @) Send R
Switch OS
Read R @ Select R :
: f g Ré(”t . ”
_ . | H o-be-evicted”, seq)
Client | Write R S »[Server
"l |
Count-Min In-switch Cache
Sketch

Programmable Switch

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Design 3 : Crash-consistent snapshot generation

Problems

Subsequent writes arrive at switch during snapshot generation

* Updating cache records incurs inconsistent snapshots

Controller
Control 1 Cache Management
Plane Switch OS
St Client |, Cache Misses J| n-switch | Server
i 4 : » Cache Key-value
Plane Client Cache Hits Server Corod
Client Programmable Server
Switch

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Design 3 : Crash-consistent snapshot generation

Triggering Snapshot Generation

(D At regular time points, controller notifies switch to trigger snapshot generation.

(@ On first write to cached R during snapshot, switch sends original R to controller.

Making a consistent snapshot ® Trigger L controller
Snapshot @ Send ® Load
(@ Controller loads all cached records for snapshot generation Original R Records
generation Switch 0S
(@ Controller updates snapshot : L
* Overwritten record: reverts with original one Client @ |write R Treci el Server
* New post-snapshot admission: not included Cache
* Post-snapshot eviction: replaces with saved evicted record

FarReach: Write-back Caching in Programmable Switches

Programmable Switch
USENIX ATC’23

Design 3 : Crash-consistent snapshot generation

Z.ero-loss crash recovery

Client-side record preservation — after latest snapshot point
* After sending write request and receiving response, client keeps value and seq locally
* After completion of snapshot generation, clients release preserved records with seq no larger than

those notified

Replay-based approach — after a switch failure

(D Server collects latest snapshot and client-side records, selects record with largest seq per key:.
@ If seq of selected record is larger, server replays write request for persistent storage.

(@ After persisting latest records, clients release preserved records.

@ In-switch cache recovered by replaying cache admission from latest snapshot, marks each

record as “outdated”.

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Evaluation

Performance under YCSB Workloads

Throughput analysis Scalability analysis
W NoCache M NetCache M FarReach M NoCache M NetCache M FarReach
2 20
& 15 a 15
o O
2 1 210
S 2 5]
= 0.5 'ﬁ
Oload A B C D F 0"T6 32 64 128
, , # of Simulated Servers
FarReach achieves higher throughput
gains over NoCache and NetCache for FarReach scales to a large number of servers
most workloads under skewed write-intensive workloads.

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Evaluation

Performance under Synthetic Workloads

Impact of write ratio Impact of key popularity changes
B NoCache B NetCache M FarReach M NoCache B NetCache M FarReach
25 0.3
L2 2
215 02
< 1 =S
Q. 2.0.1
= 0.3 | §
0O 25 50 75 100 0
Write Ratio (%) Static Hot-in Hot-out Random
FarReach achieves higher throughput FarReach quickly reacts to the key popularity
gains over NoCache and NetCache for changes, so it maintains the cache hit rate and
more write-intensive workloads hence the average throughput.

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Evaluation

Snapshot Generation and Crash Recovery

Performance of snapshot generation Crash recovery time
W Hot-in M Hot-out M Random 2 :
0.3 M Server M In-switch Cache
n
a¥ ‘n
© 0.2 ~
EO.I- =
= 0! |
0 25 5 75 10 07900 1000 10000
Snapshot Period (s) Cache Size (Records)

Snapshot generation has a limited impact
on throughput for various snapshot periods
under different dynamic patterns

Crash recovery time is within 2.35 s
for various in-switch cache sizes

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

Paper Summary

Key-Value Store —

Features

—> Skewed workload
more l

— Write-intensive —1—> Write-through +——

In-switch Cache

—> Write-back <«

'

Challenges Ideas Problems
Performance » Non-blocking cache admission —<+——— Subsequent request
Availability > Available cache eviction < arrive at switch

at each stage
Reliability » Crash-consistent snapshot generation -

FarReach: Write-back Caching in Programmable Switches USENIX ATC’23

