Oakestra:

A Lightweight Hierarchical Orchestration Framework
for Edge Computing

USENIX ATC’23

2023.09.27

Background

Edge Computing
Actual real-world implementations of edge computing remain limited

* Resources at the edge are far less capable and more heterogeneous than datacenters
» Existing orchestration frameworks perform poorly at the edge since they were designed for

reliable, low latency, high bandwidth cloud environments

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Background

Goal

Design a hierarchical orchestration framework for enabling running edge computing

applications on heterogeneous resources

Challenges

* Scalability: support the infrastructure-at-scale — allowing scaling from thousands to
millions of distributed nodes without management overheads

* Deployment: consider most up-to-date constraints of edge servers and autonomously
find a compatible node for deployment

* Communication: ensure microservices communicate efficiently while meeting

detailed SLA requirements of apps

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Main Idea

Cloud-edge continuum is separated into fine- and coarse-grained management responsibilities
across hierarchy

* Logical three-tier hierarchy — Scalability
* Delegated scheduling mechanism — Deployment

* Semantic overlay networking — Communication

A cuer
ovser g ¢ ”
0_0 OUo 5

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Architecture Overview

Oakestra

A flexible hierarchical orchestration framework designed

=— Root Orchestrator

. . . L)
for heterogeneous and constrained edge computing Descriptor |9 Root Scheduler
. _ (_8) Service System
infrastructures ; —E—bg Manager || Manager || g, ot patabase
* Root Orchestrator: centralized control plane and is | 4
. . [Cluster Orchestrator &]
responsible for managing resource clusters |c,uste, ———]| [Cluster BJ Cluster C|
. . Service Cluster
* Cluster Orchestrator: a logical twin of the root but /|| Manager || Manager oo g]| (CusterA | ™\
with management responsibility restricted to o
resources within the local cluster Node || Execution | Node || Execution |
Engine || Runtime ' Engine |! Runtime ,
* Worker Nodes: edge servers in clusters responsible Net |o Bl ||| Net Bl
Manager|; =9 o Manager|; =9 o
for executing services \ 8 —Worker 1 [ARM ——Worker n—— /

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Design #1: Decoupled three-tier hierarchy

Problem

Flat management (inherent to most orchestration solutions) limits scalability.

T [Jrootl___cluster
—

* -

1 |r.—! I!—._l | |] /—._'

1-45 3-15 5-9 9-5 15-345-1
Cluster-Worker ratio

Scheduling (ms)
il S sl
S oD iy

A hierarchical management design 1s inherently better for scalability at the edge

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Design #2: Delegated scheduling mechanism

Problem Cluster 2

Existing edge orchestration framework only Cluster 1
considers service scheduling and does not take O 6

into account resource management. O Q Q
Key Idea Cluster 3 O
Upon receiving a service deployment request, Root

the root scheduler finds a suitable cluster, and O

cluster scheduler finds a suitable worker node. O

O

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Design #2: Delegated scheduling mechanism

Workflow

Step #1: Developers submit the code along with an SLA descriptor to the system manager.

Rest/GUI

System Manager

Clustery Cluster, Cluster,

"application name" : "ArPipeline",
"application namespace" : “production",
"application _desc" : "AR object detection”,
"microservices" : [

{

"microservice name": "object-detection",

"microservice namespace": "production",

"virtualization": "container",

"memory": 100,

"vepus"': 1,

"vgpus": 1,

"code": "demo-pipeline:detection",

"port": "5001:5001/udp",

"addresses": { "rr_ ip": "10.30.30.30" },

SCconsEEan ESEIWeRren]

Services Root Scheduler

)

SLA descriptor

OO0 000 000

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Design #2: Delegated scheduling mechanism

Worktlow
Step #2: Root scheduler matches SLA

constraints to current capacity of each

cluster and finds a suitable cluster to

System Manager
Root Scheduler
Obj i)

rk1 Obj | Obj

T T

OO0 000 000

offloads the deployment request.

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Design #2: Delegated scheduling mechanism

Workflow
Step #3: Cluster scheduler calculates the optimal

service placement within its cluster, leveraging 'Root Orchestrator
the available schedulers :
Systm Manager

Cersice- Root Scheduler
Agr..-rrk (0]4]]

Cluster,

Agr ..
Cluster; Clusie Y Cluster,

Scheduler Trk Obj

Agr - Obj Tt Obj

000 00C 000

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Design #2: Delegated scheduling mechanism

Workflow
Step #3: Cluster scheduler calculates the optimal

service placement within its cluster, leveraging

the available schedulers

System Manager
* Resource-Only Manager Match
(ROM) Cerices Root Scheduler

Maximize hardware utilization

* Latency & Distance Aware
Placement (LDP)

Service placement closer to

user’s location Ag Obj Tk,

Clusters Cluster,

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Design #3: Semantic overlay networking

Problem

Majority of existing solutions make an assumption that edge servers from multiple participating

infrastructure operators can interact over a common/public network, which is impractical.

Key Idea

* Transport layer packet tunneling to interconnect services operating on

resources with limited accessibility

Implemented in

* Dynamic routing policies transparently enforced via semantic service NetManager

addressing to support load balancing catering to edge environments

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

USENIX ATC’23

Design #3: Semantic overlay networking

Semantic service addressing

* Namespace IP: real address of the instance, the one provisioned at deployment time

* Service IP: references all the instances(replicas) of a microservice with a single address

* Instance IP: balances the traffic only to a specific service instance within the system
Service B Service IP

Instance IP
10.30.1.5
Namespace IP
10.101.3.23

To: 10.30.0.1

|

Service A
Instance 1

g

To:10.30.0.2

To: 10.30.0.2

2 —

To: 10.30.0.5

- Closest: 10.30.0.1
- RoundRobin: 10.30.0.2
Instance IP
) ']
4 N To: 10.18.3.1 ISetn.'lce Ii . 10.30.0.3 o
Net — nstance amespace
g 10.18.3.1
Manager
To: 10.21.3.2 i h
> Service B
ProxyTUN 7 Instance 2
- v
To: 10.41.3.7 (A
Conversion Service B
Table 77, 7%] Instance 3

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

USENIX ATC’23

Instance IP

10.30.04
Namespace IP

10.21.3.2

Instance IP
10.30.0.5
Namespace IP
10.41.3.7

Design #3: Semantic overlay networking

Transport layer packet tunneling
Oakestra enables inter-service communication across workers in different clusters with limited

available ports through UDP tunneling

Worker 2
Worker 1 Worker 3
Service A
Service A <t Instance 2 Service A
Instance 1 Instance 3
UDP Tunnel j
Service B TCP T~ Service B
Instance 2 <4—— TCP < 1y Instance 1
UDP Tunnel

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Evaluation

Service Deployment

Deployment time for different infrastructure sizes Deployment time with network delay
00 { I Oakestra-[ns| I K8s-|ns] ,\125 K3
@ Oakestra-|s] A K8s-|s] -+ ‘m/l 00| HHM Oakestra
[TK3s-[ns] [MicroK8s-[ns] i <+
“v 10| EZAK3s-[s] [Z2Z] MicroK8s-|s]] 0
=40 E 0.75]
(D) / —
E ¢ 5 0.50]
— % g
)
0.25
o)
O') |
2-workers 6-workers 10-workers 000P=0T 50 100 250

Network Delay (ms)

With low overhead scheduling, Oakestra has a short deployment time

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

USENIX ATC’23

Evaluation

Scalability

CPU usage of worker & cluster orchestrator in stress

1001 @:W - --x-- K3s

Ve v —
”’,Vv%%gvv v, o Oakestra
== [5 wvv% v E
S~ v Xy VVV v
~— . A . , %V
> 50
?v v
O LY WY
251.
\4
0

0 25 50 75 100 0 250 500 750 1000
Services Worker ~ # Services Cluster

Negligible overhead in Oakestra demonstrates its efficacy to support large service volumes

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Evaluation

Networking

End-to-end latency

22.01
20.01

17.5 ﬁ
£ps|

S

E 10.0 %‘

7.9
.01

2.51012 worker I 10 worker

O°OOakéstra K3s K8s MicroK8s

Proxying and site-to-site tunneling introducing minimal additional overhead while balancing with
more replicas, especially at the edge

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing USENIX ATC’23

Paper Summary

Edge

Problems

Edge
—
Resources

—

Computing

Oakestra =—

Orchestration
Frameworks

l_l

Challenges Design

—> Scalability —— Logical three-tier hierarchy

— ROM

—> Deployment ——— Delegated scheduling mechanism

—> Communication —> Semantic overlay networking ——

> LDP

—> Semantic service addressing

Context separation into fine- and coarse-grained

management responsibilities across hierarchy

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

—> Transport layer packet tunneling

USENIX ATC’23

