
Oakestra:
A Lightweight Hierarchical Orchestration Framework

for Edge Computing

USENIX ATC’23

1

2023.09.27

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

2

USENIX ATC’23

Edge Computing

Background

• Resources at the edge are far less capable and more heterogeneous than datacenters
• Existing orchestration frameworks perform poorly at the edge since they were designed for

reliable, low latency, high bandwidth cloud environments

Actual real-world implementations of edge computing remain limited

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

3

USENIX ATC’23

Background

Goal
Design a hierarchical orchestration framework for enabling running edge computing
applications on heterogeneous resources

Challenges
• Scalability: support the infrastructure-at-scale – allowing scaling from thousands to

millions of distributed nodes without management overheads
• Deployment: consider most up-to-date constraints of edge servers and autonomously

find a compatible node for deployment
• Communication: ensure microservices communicate efficiently while meeting

detailed SLA requirements of apps

Root Orchestrator

Cluster1
Cluster2

Clustern

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

4

USENIX ATC’23

Main Idea

Cloud-edge continuum is separated into fine- and coarse-grained management responsibilities
across hierarchy
• Logical three-tier hierarchy → Scalability
• Delegated scheduling mechanism → Deployment
• Semantic overlay networking → Communication

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

5

USENIX ATC’23

Architecture Overview

Oakestra
A flexible hierarchical orchestration framework designed
for heterogeneous and constrained edge computing
infrastructures
• Root Orchestrator: centralized control plane and is

responsible for managing resource clusters
• Cluster Orchestrator: a logical twin of the root but

with management responsibility restricted to
resources within the local cluster

• Worker Nodes: edge servers in clusters responsible
for executing services

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

6

USENIX ATC’23

A hierarchical management design is inherently better for scalability at the edge

Root Orchestrator

Cluster1
Cluster2 Clustern

Design #1: Decoupled three-tier hierarchy

Problem
Flat management (inherent to most orchestration solutions) limits scalability.

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

7

USENIX ATC’23

Design #2: Delegated scheduling mechanism

Problem
Existing edge orchestration framework only
considers service scheduling and does not take
into account resource management.

Key Idea
Upon receiving a service deployment request,
the root scheduler finds a suitable cluster, and
cluster scheduler finds a suitable worker node.

Cluster 2
Cluster 1

Cluster 3

Root

service

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

8

USENIX ATC’23

Design #2: Delegated scheduling mechanism

Services

Cluster1 Cluster2 Clustern

System Manager Service Manager

Clusters Root Scheduler

Rest/GUI

Services

Root Orchestrator

Workflow
Step #1: Developers submit the code along with an SLA descriptor to the system manager.

SLA descriptor

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

9

USENIX ATC’23

Design #2: Delegated scheduling mechanism

Services

Cluster1 Cluster2 Clustern

System Manager Service Manager

Clusters Root SchedulerServices

Root Orchestrator

Workflow
Step #2: Root scheduler matches SLA
constraints to current capacity of each
cluster and finds a suitable cluster to
offloads the deployment request.

Agr ObjTrk Agr ObjTrk Obj

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

10

USENIX ATC’23

Design #2: Delegated scheduling mechanism

Services

Cluster1 Clustern

System Manager Service Manager

Clusters Root SchedulerServices

Root Orchestrator

Workflow
Step #3: Cluster scheduler calculates the optimal
service placement within its cluster, leveraging
the available schedulers

Cluster
Scheduler

O

Cluster2
Agr Obj

ObjAgr

Trk Obj

TrkObj

Agr ObjTrk

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

11

USENIX ATC’23

Design #2: Delegated scheduling mechanism

Services

Cluster1 Cluster2 Clustern

System Manager Service Manager

Clusters Root SchedulerServices

Root Orchestrator

Workflow
Step #3: Cluster scheduler calculates the optimal
service placement within its cluster, leveraging
the available schedulers

Agr
ObjTrk

• Resource-Only Manager Match
(ROM)

 Maximize hardware utilization

• Latency & Distance Aware
Placement (LDP)

 Service placement closer to
 user’s location Agr

Agr

Obj

Obj

ObjTrk

Obj Trk

Key Idea
• Transport layer packet tunneling to interconnect services operating on

resources with limited accessibility
• Dynamic routing policies transparently enforced via semantic service

addressing to support load balancing catering to edge environments

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

12

USENIX ATC’23

Design #3: Semantic overlay networking

Problem
Majority of existing solutions make an assumption that edge servers from multiple participating
infrastructure operators can interact over a common/public network, which is impractical.

Implemented in
NetManager

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

13

USENIX ATC’23

Design #3: Semantic overlay networking

Semantic service addressing
• Namespace IP: real address of the instance, the one provisioned at deployment time
• Service IP: references all the instances(replicas) of a microservice with a single address
• Instance IP: balances the traffic only to a specific service instance within the system

Net
Manager

Conversion
Table

ProxyTUN

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

14

USENIX ATC’23

Design #3: Semantic overlay networking

Transport layer packet tunneling
Oakestra enables inter-service communication across workers in different clusters with limited
available ports through UDP tunneling

Service A
Instance 1

Service A
Instance 2 Service A

Instance 3

Service B
Instance 1

Service B
Instance 2

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

15

USENIX ATC’23

Evaluation

Service Deployment

With low overhead scheduling, Oakestra has a short deployment time

Deployment time for different infrastructure sizes Deployment time with network delay

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

16

USENIX ATC’23

Evaluation

Scalability
CPU usage of worker & cluster orchestrator in stress

Negligible overhead in Oakestra demonstrates its efficacy to support large service volumes

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

17

USENIX ATC’23

Evaluation

Networking

End-to-end latency

Proxying and site-to-site tunneling introducing minimal additional overhead while balancing with
more replicas, especially at the edge

Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing

18

USENIX ATC’23

Paper Summary

Edge
Computing

Orchestration
Frameworks

Edge
Resources

Challenges Design

Scalability

Deployment

Communication

Logical three-tier hierarchy

Delegated scheduling mechanism

Semantic overlay networking

ROM
LDPOakestra

Semantic service addressing

Transport layer packet tunneling

Problems

❌

Context separation into fine- and coarse-grained
management responsibilities across hierarchy

