Revisiting Secondary Indexing in LSM-based
Storage Systems with Persistent Memory

ATC’2023

Background: LSM-Tree

* WAL Log

A sequential log that records all writes

before they are applied, enabling crash recovery.

 Memtable

An in-memory balanced tree that buffers incoming writes.

e Immutable Memtable

A memtable that is made read-only and pending flush to
disk.

 SSTable

An immutable sorted file on disk containing key-value

pairs.

Log Structured Merge Trees

Write J
[RAM

Memtable

Immutab1e
Memtable

=5 |

S5Table

I Fuush & w0

Majogf Compacti

10MB

Tmpacﬂm 100MB

Level N

e | B ble ‘SSTable | Major
............... ko s e T S
SSTable | | SSTable ‘ SSTable | | SSTable

1000MB

DISK

-

Background: LSM-Tree

* Tier Compaction
* Number of SSTables in a level Reach Threshold conduct Tier Compaction

* Multiple SSTables in that level will be merged into a new SSTable and placed into the next higher
level

Level O m Level O III

Level 1 [1] [2] [B] —t Level 1

LevelZE] Level 2 E
Pl I=Fiil]

Background: Secondary Indexing

* Primary Key Index: indexed by primary key.(StudentID)
* Querying by non-primay-key i1s common. E.g., find student whose major 1s Computer.

* Second Index
* Additional index maintaining mappings of other field to primary key. E.g., {Major -> StudentID}
* Besides the main index based on primary key, all other indexes are secondary index
* Indispensable technique in database system

EnrollmentYear | ... |

0001 Math 2021 g
0002 Computer 2021 Normomsing \
(0001) 0003 Music 2022
(0003) 0004 Physics 2022 + = = = » = —(Physics -> 0004)
0005 Computer 2023

Primary Index Secondary Index

Primary Table

Challenge: Inefficient Secondary Indexing in LSM-
based Systems

* Secondary Indexing is inefficient with LSM-Tree
* Inferior read performance is not friendly to secondary indexing

* Secondary Index Mismatch! LSM-Tree
» KV pairs are small(value is just primary key) « > * Disk & Block Based
* Non-unique(multiple values) - » ¢ Multi Level

LSM Secondary Index

Memory l]

oo Attributes of secondary indexes and LSM-tree are mismatched!
IS
L0 @
v @ @ @

@ @ - @

Challenge: Consistency Among Indexes

* Consistency Among Indexes is troublesome due to blind-write

* E.g., update Alice(0001)’s major from Math to Computer: PUT:{0001->Alice, Computer} In
LSM-Tree

* In secondary Index:

* Insert new entry {Computer -> 0001}
* Delete old entry {Math -> 0001}

Computer 2021
Music 2022
Physics 2022
Computer 2023

* Problem: Do not know old secondary
key Math due to blind-write

Primary Table

(00Q¥=> {Alice, Compuer, ...}) (Copbuter ->0Q01)
(0001 -> {Alice, Math, ...} tMath—>-0001)
Primary Table Secondary Index

Challenge: Consistency Among Indexes

* Two strategies for this issue:

* Synchronous: READ old record to get old secondary key Math, and then delete
in secondary index.

* Validation: keep old entry {Math -> 0001}, but at query, fetch record of ‘0001’
in primary table for validation

Secondary Index

Primary Index

p2 sl 51 = p2 s2¥p2 | | |s1—2p2
MemTable MemTable ! MemTable
pl = s2 52 2 pl 51 ¥ pl 52 2 pl

p2 2 s2 pl *sl 52 7 p2 s1 2 pl s2 2 p2| |s17*pl

|
|
I
|
|

SSTables | SSTables I SSTables
: I
' I
! |
: I
I

(a) Synchronous Strategy » (b) Validation Strategy

Challenges

* LSM-Tree Not suitable for secondary indexing:

* Optimize query efficiency in LSM-based secondary index (consider multiple
values & small KV pairs)

* Retain blind-write attribute and consistency of secondary indexes

\ 4

Find a better solution for secondary indexes in LSM-based
storage systems

Persistent Memory

* leveraging persistent memory (PM) to provide a new solution for secondary
indexing is promising.
* Byte-addressability

DRAM comparable latency

Data persistency

high random access latency

write amplification for small random writes

* Though there are many state-of-the-art PM-based indexes, none of them are
designed for secondary indexing
* Use Composite Index

‘ Overshadow their performance!

* Use a conventional allocator

Perseid Design Overview

° PS'Tree R :EFSE.:rrch L5 1 R ——
« PKey layer for storing secondary values DRAM ,f’iaf-ff-r[:]-f Lorrendl . [MemTable]
* log-structured approaches insertions i = -

* Arranges entries with good locality

(54.3) Hybrid Hash Tables |
* Hybrid PM-DRAM Validation 7 Walidation : A |

- Retains blind-write of LSM N ! A
* Lightweight validation on DRAM (Secondary Index) | Lsm primary Table
* Non-Index-Only Query Optimizations Figure 2: The overall architecture with Perseid.

* Filters out irrelevant component
* Parallelizes primary table searching

PS-Tree SKey

nodes
* SKey Layer S s s e
« Indexing secondary- keys “:;zz 2 L ;PI K‘;z K‘: nodes
* Using F:Xisting high-performance PM- PKey St S
based index it LEE LSl e

Each pointer stores a pointer to Pkey page
and offset within a Pkey page

* PKey Layer

Each PKey entry has an 8-byte metadata header and a primary key.
Metadata Header contains SQN Number

Inserts PKey Entries into PKey Pages in a log-structured manner to reduce the write

overhead
Stores PKey Entries of contiguous SKeys in the same PKey Page

GH| PE1 | PE2 |GH| PE:x

\—\-‘—’l
PKey Group

Rearrange entries Pkey entries that belongs to same secondary keys to store as a Pkey Group

10

PS-Tree

* PKey Group

* Contain a group header(GH) and multiple
Pkeys(PE) of the same Skeys

» Skey point to latest Pkey group

» Groups belongs to one Skey are linked

SKey
Inner
Layer nodes
KP1|KP KP. KP1|KP KP Leaf
‘;<: sl bk ’/I ; é’ nodes
PKey PKey Page PKey Page PKey Page
Layer
GH| PE1 | PE2 |GH| PE:
\‘ﬁ‘—"‘
PkKey Group
.. |ska|ske|ske| ..
Group Header \
.
PE || PE||PE||PE||PE|]|PE]|]PE]|]|PE
v o

......

11

PS-Tree Basic Operations

¢ Log-Stl’uCtured Insertion Algorithm 1: Insert(SKey sk, PKey pk, Slice val, Se-
gNumber seq)

* First search for the Skey to get
corresponding Pkey Group

1 search for the leaf _node and pointer ptr of sk in SKey Layer;

2 if ptr #£ NULL then // found sk
* Second appends a new Pkey Group in that 3 | pkey_page = pointer.pkey_page;
Pkey page 4 else
* Thrid the new pointer of the Skey is : ELd DS, Dase = leut e 3 8L PR DS IRERaR.:
updated or inserted in the SKey Layer 7 if pkey_page is full then
8 pkey_page split;
° SearCh 9 goto Line 1;

* First Search Skey Layer for secondary key 1o end |
i : 11 construct a PKeyGroup pg with pk, val, seq, and ptr;
and 1its pointer

12 new_ptr = pkey_page—+append(pg);
 Validate the primary Key before returning 13 leaf_node—upsert(sk, new_ptr);

12

PS-Tree PKey Page Split & GC

* Pkey Page split & GC

* Split Pkey Page in a copy-on-write manner when
Space not enough

 rearranges PKey Entries belonging to the same SKey
in one PKey Group

* Physical remove obsolete entries and validate other

SKa | SKb | SKc | ...
Group Header \
#
PE PE PE lPE PE JPE PE PE
SKa | SKb | SKc | ...
PE | PE PE | PE PE | PE | PE

Hybrid PM-DRAM Validation

. kE"ﬂ' value
* Perseid introduce a lightweight validation approach S e

= hisial | T (v2,2)

EE hoshfc)

* Retain blind-write of LSM primary table - CHECK (a,v1) CHECK (a,v2)

s PUT (c,v1) PUT (c,v2)
* Volatile hash table in DRAM, persistent hash table in PM al(v33) a|(v33) al(v33)
L=+] (vi1) c|(v2,2)

hashic)
* Matain the latest version number for primary keys with Persistent b (v1,1) b (vi,1) b|vi1)
hash table
TINE = - - - - - - -
t t2 3

 Validate using hash table instead of LSM primary table

14

Non-Index-Only Query Optimizations

| |
301~400
* Locating Components with Sequence Number L | (0-209) :
* Build a zone map that stores SQN range for each , e e e
. . 101~197 101~197
 Vertically search SQN range and horizontally search Lo+ | (2-137) (Qa .lz(]}'] :
Pkey 1~99 199
* Reducing most component overhead with tiering
Strategy

8 g o 8 8 &

 Parallel Primary Table Searching o TEELITER T Fioead 1.7¥himec2 Thiread 3
* using multiple threads to accelerate primary table : e PK2 2
SearChlng : PK1 PK1 — PKA
* apply a worker-active fashion. | -
: — - e PKG
I PK2
' (a) Equal Distribution (b) Worker-Active

15

Evaluation: Experiment Set Up

Hardware

CPU [8-core Intel Xeon Gold 5220 CPU

PM 2 %128 GB Intel Optane DC PMMs
DRAM 64 GB DDR4 DIMMs

SSD 480 GB Intel Optane 905P

Compared Systems Workloads

FAST&FAIR-Perseid P-Masstree-Perseid Twitter-like workload generator for secondary indexing

FAST&FAIR-composite P-Masstree-composite 100 million primary keys, 4 million secondary keys, record size
1KB

FAST&FAIR-log P-Masstree-log

LSMSI LSMSI-PM

16

Evaluation: Insert and Update

* Perseid performs about 10-38% faster than the

0y e WS
. s o o erse asstree-composite
correspondlng COmpOSlte indexes 0 P-Masstree-lﬂgg @ P- Masstree Perseid ke

I
—

* 25% slower than the ideal log-structured

approach without garbage collection due to the
page split overhead in PS-Tree.

Latency (us/op)
=
[I—
i
R
e R i
_
==r=g=um
| —
_
—r——
[—
_

(a) Ensert (b) Umf::rrm (c) Skewed Pri (d) Skewed Sec

17

Latency (ps/op)

Evaluation: Index-Only Query

* LSMSI is quite inefficient for queries, even if on PM
* Perseid outperforms existing PM indexes by up to 4.5x

* Perseid is much more stable across different workloads, owing to the locality-aware design
of PS-Tree.

[] LSMSI @ LSMSI-PM) FAST&FAIR-composite () FAST&FAIR-log
@) FAST&FAIR-Perseid) P-Masstree-composite (] P-Masstree-log @ P-Masstree-Perseid lower is better
a7 92 102 93 98 89 168 173 264 261 423 4086 276 263 1047 1062
: I [[
i 80r-{@------- 1T ------- B [- -| Limit=200 | 1
60F- 1 ------- I, ------- I ------- I ---- - -
s BN TERDUE Y DR | RS]
10 E I I I
20- 4 ------- 1 S IR i IR
| D |
(a) No Updates (b) Uniform (c) Skewed-Pri (d) Skewed-Sec (a) No Updates (b) Uniform (c) Skewed-Pri (d) Skewed-Sec

18

) secondary index

ficant effect, by up to 3.1x

have signi
p<J validation

ing

table search

primary table

. (b) Skewed-Pri| _ . __

ions on primary

imizat

Evaluation: Non-Index-Only Query

* Perseid outperforms LSMSI by up to 2.3x

* Opt

m.._u __,..U _ +PAR
ﬁ_.-u =] A +mmD
g Perseid
o ! 3

=

" K| +PAR
w1 +SEQ
- EEESCT | Composite

= == = = = = = = = o

f +PAR
+SEQ
LSMSI-FPi

1 +FPAR
+SEQ
Perseid

+PAR
+SEQ

+PAR
+SEQ
LSMSI-PM

+PAR
+3EQ
Perseid

+PAR
+3EQ
Composite

| +PAR
+3EQ
LSMSI-PM

{11771 SRR
1000+

it=10

_{c) Skewed-Sec
Limit
i
+
2
i)

+PAR
+5EQ
Perseid

+PAR
+5EQ
Composite

- XA +PAR
. +SEQ
LSMSI-PM

[RRR]| +SEQ

P]| Composite
* EECA | +PAR

oSS s A | +SEQ

?‘_’drﬂwﬂ- LSMSI-PM

(a) NoUpdates | . _ _ .
t

1
n

[=] =
[=]
=]

400} - - - -

(doysr) Aousien

19

Conclusion

Perseid
Retain Blind-write / PS-Tree
—>
attribute &High Query
Y Performance
Secondary
indexing in LSM- . Keeo Consist]
based storage T EeP LONSISTEREY 0 > PM&DRAM Validation
systems with PM

— Optimizie Primary table search » Two Optimizations Approaches

20

