
Revisiting Secondary Indexing in LSM-based
Storage Systems with Persistent Memory

ATC’2023

Background: LSM-Tree

• WAL Log
 A sequential log that records all writes

 before they are applied, enabling crash recovery.

• Memtable
 An in-memory balanced tree that buffers incoming writes.

• Immutable Memtable
 A memtable that is made read-only and pending flush to

 disk.

• SSTable
 An immutable sorted file on disk containing key-value

 pairs.

1

Background: LSM-Tree

• Tier Compaction
• Number of SSTables in a level Reach Threshold conduct Tier Compaction
• Multiple SSTables in that level will be merged into a new SSTable and placed into the next higher

level

2

Background: Secondary Indexing

3

• Primary Key Index: indexed by primary key.(StudentID)
• Querying by non-primay-key is common. E.g., find student whose major is Computer.
• Second Index

• Additional index maintaining mappings of other field to primary key. E.g., {Major -> StudentID}
• Besides the main index based on primary key, all other indexes are secondary index
• Indispensable technique in database system

Challenge: Inefficient Secondary Indexing in LSM-
based Systems

4

• Secondary Indexing is inefficient with LSM-Tree
• Inferior read performance is not friendly to secondary indexing

• Secondary Index
• KV pairs are small(value is just primary key)
• Non-unique(multiple values)

• LSM-Tree
• Disk & Block Based
• Multi Level

Mismatch!

Challenge: Consistency Among Indexes

5

• Consistency Among Indexes is troublesome due to blind-write
• E.g., update Alice(0001)’s major from Math to Computer: PUT:{0001->Alice, Computer} In

LSM-Tree
• In secondary Index:

• Insert new entry {Computer -> 0001}
• Delete old entry {Math -> 0001}

• Problem: Do not know old secondary
key Math due to blind-write

Challenge: Consistency Among Indexes

5

• Two strategies for this issue:
• Synchronous: READ old record to get old secondary key Math, and then delete

in secondary index.
• Validation: keep old entry {Math -> 0001}, but at query, fetch record of ‘0001’

in primary table for validation

Discard blind-write, low write performance

Low query performance

Challenges

6

• LSM-Tree Not suitable for secondary indexing:
• Optimize query efficiency in LSM-based secondary index (consider multiple

values & small KV pairs)
• Retain blind-write attribute and consistency of secondary indexes

Find a better solution for secondary indexes in LSM-based
storage systems

Persistent Memory

7

• leveraging persistent memory (PM) to provide a new solution for secondary
indexing is promising.

• Byte-addressability
• DRAM comparable latency
• Data persistency
• high random access latency
• write amplification for small random writes

• Though there are many state-of-the-art PM-based indexes, none of them are
designed for secondary indexing

• Use Composite Index
• Use a conventional allocator

Overshadow their performance!

Perseid Design Overview

9

• PS-Tree
• PKey layer for storing secondary values
• log-structured approaches insertions
• Arranges entries with good locality

• Hybrid PM-DRAM Validation
• Retains blind-write of LSM
• Lightweight validation on DRAM

• Non-Index-Only Query Optimizations
• Filters out irrelevant component
• Parallelizes primary table searching

PS-Tree

10

• SKey Layer
• Indexing secondary- keys
• Using existing high-performance PM-

based index
• Each pointer stores a pointer to Pkey page

and offset within a Pkey page

• PKey Layer
• Each PKey entry has an 8-byte metadata header and a primary key.
• Metadata Header contains SQN Number
• Inserts PKey Entries into PKey Pages in a log-structured manner to reduce the write

overhead
• Stores PKey Entries of contiguous SKeys in the same PKey Page
• Rearrange entries Pkey entries that belongs to same secondary keys to store as a Pkey Group

PS-Tree

11

• PKey Group

• Contain a group header(GH) and multiple
Pkeys(PE) of the same Skeys

• Skey point to latest Pkey group

• Groups belongs to one Skey are linked

PS-Tree Basic Operations

12

• Log-Structured Insertion
• First search for the Skey to get

corresponding Pkey Group
• Second appends a new Pkey Group in that

Pkey page
• Thrid the new pointer of the Skey is

updated or inserted in the SKey Layer
• Search

• First Search Skey Layer for secondary key
and its pointer

• Validate the primary Key before returning

PS-Tree PKey Page Split & GC

13

• Pkey Page split & GC

• Split Pkey Page in a copy-on-write manner when
Space not enough

• rearranges PKey Entries belonging to the same SKey
in one PKey Group

• Physical remove obsolete entries and validate other

Hybrid PM-DRAM Validation

14

• Perseid introduce a lightweight validation approach

• Retain blind-write of LSM primary table

• Volatile hash table in DRAM, persistent hash table in PM

• Matain the latest version number for primary keys with Persistent
hash table

• Validate using hash table instead of LSM primary table

Non-Index-Only Query Optimizations

15

• Locating Components with Sequence Number
• Build a zone map that stores SQN range for each

component
• Vertically search SQN range and horizontally search

Pkey
• Reducing most component overhead with tiering

Strategy

• Parallel Primary Table Searching
• using multiple threads to accelerate primary table

searching
• apply a worker-active fashion.

Evaluation: Experiment Set Up

16

Hardware

Compared Systems

FAST&FAIR-Perseid P-Masstree-Perseid

FAST&FAIR-composite P-Masstree-composite

FAST&FAIR-log P-Masstree-log

LSMSI LSMSI-PM

Workloads

Twitter-like workload generator for secondary indexing

100 million primary keys, 4 million secondary keys, record size
1KB

Evaluation: Insert and Update

17

• Perseid performs about 10-38% faster than the
corresponding composite indexes

• 25% slower than the ideal log-structured
approach without garbage collection due to the
page split overhead in PS-Tree.

Evaluation: Index-Only Query

18

• LSMSI is quite inefficient for queries, even if on PM

• Perseid outperforms existing PM indexes by up to 4.5x

• Perseid is much more stable across different workloads, owing to the locality-aware design
of PS-Tree.

Evaluation: Non-Index-Only Query

19

• Perseid outperforms LSMSI by up to 2.3x

• Optimizations on primary table searching have significant effect, by up to 3.1x

Conclusion

20

Perseid

Secondary
indexing in LSM-
based storage
systems with PM

Retain Blind-write
attribute &High Query
Performance

Keep Consistency of

Optimizie Primary table search

PS-Tree

PM&DRAM Validation

Two Optimizations Approaches

