ROLEX: A Scalable RDMA-oriented
Learned Key-Value Store for
Disaggregated Memory Systems

Pengfei L1, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng,
Huazhong University of Science and Technology

FAST 23 Best Paper
Speaker: Jun Wu

Background

Disaggregated Memory Systems

Memory Pool
High resource Utilization
| | | | | | ~._ V Scalability
‘ 4/ Fault Isolation

|| [1 || [1 Data Sharing

O
G000

Compute Pool

Background

Disaggregated Memory Systems

Remote Direct Memory Access(RDMA)
Memory Pool

O
0000

Compute Pool

Two-sided RDMA

— [-1 —> —>
e

client server

One-sided RDMA

Background

» Deploying tree-based structure(ordered KV-store) in the disaggregated memory system (Two-sided)

» Memory Node has limited computing resources! Compute Node

Get(k) —»t}

RNIC

L

a——

Memory Node

RNIC

L

B+ Tree

-0

Sorted Data\

113

5

Background

» Deploying tree-based structure(ordered K'V-store) in the Disaggregated Memory System (One-sided)

» Memory Node has limited computing resources!

» Memory consumption on compute node! Get(k) ﬁt}

Compute Node

RNIC

-

pos

Local cache

a——

Sorted Data \ /

Memory Node

RNIC

1

3

5

.

Background

» Deploying tree-based structure(ordered KV-store) in the disaggregated memory system (One-sided)

a——

» Memory Node has limited computing resources! Compute Node Memory Node

» Memory consumption on compute node! Get(k) —»t} g

» Multi RTT reduce performance!

FYVVVN
vy

miss

Local cache

Sorted Datax

1(3[5/8]

Background

» Learned Indexes
» Easy-to-use and small-sized learned models

» 2-4 space-saving than tree-structured indexes

» High searching speed than B+ tree indexes

Pos & P :
(a) B-Tree Index (b) Learned Index oredict+€ 0
Key Key
v v

predict ot
Model
BTree (e.g., NN) predlct_é: , el

pos\] pos\q

pos -0 pos + pagezise pos - min_err pos + max_er

Background

» Deploying Learned Index structure(ordered KV-store) in the disaggregated memory system

» Works well in Get(k)

» How to manage Put(k, v)?

Compute Node

Get(k) —»jc:j: RNIC |1
_/—

Local cache

a——

Learned index

Memory Node
’ RNIC :[::j:
Sorted Dat

113[5

Background

» Deploying tree-based structure(ordered K'V-store) in the disaggregated memory system

» Works well in Get(k) B

Compute Node Memory Node
> How to manage Put(k, v)? Get(k) —’1:} e | e :[:j
> Xstore @ OSDI’20 — -
» Read via learned index ;’%‘ B+ tree index Learned index
» Write via B+ Tree index
» Xstore-D
» transferring data modification requests to memory Local cache
nodes Sorted Data
» computing resources in the memory nodes are 113[5]8]
insufficient a

Challenges

» Limited computing resources on memory nodes
Get(k) %{j

» Overloaded bandwidth for data transferring

» Inconsistency issue among different nodes

Compute Node

"’%

Local cache

RNIC B
«—

Memory Node

B+ tree index

/N

Sorted Data

1

3

5

10

ROLEX Design
Overview

» Main Insight: Execute index operations with atomic designs and Asynchronously retrain models by decoupling
the insertion and retraining operations with consistency guarantees.

» Design 1

» Retraining-decoupled Learned Indexes
» Design 2

» One-sided Index Operations
» Design 3

» Asynchronous Retraining

Memory Pool

Leaf Region

Datall |

Learned index

Insert model pointer

—_—, -
P

|Learned cache

Compute Pool

[___ImMetadata [| Leaf) Upper model [PLR model :I:II CPU

11

Retraining-decoupled Learned Indexes(chl)
» Key idea: Modify training algorithm and add some constraints on data movements.

» Train the piecewise linear regression
(PLR) models

» Adding a bias (represented as J) to the
prediction calculation

position

» Moving data within fixed-size(d) leaves

» Synonym-leaf sharing

€ >=max|f(X;)-Y;| Vi€ (0,N)

Pmnge — [f(Xf)_E_S’f(XE) +E+8] L s [f(XE)_E f[:XE)-}-E] Vi € (0 N)
range — 8 ’ 8 ?

Le a-Fj_Heg ion
I 1
Data | [1 1 [1 ¥ 1]

Contain O data 12

One Sided Indexing

» Upper models is trained on smallest keys

> LT and SLT store the leaf numbers to
access leaves

» Each leaf entry points to its corresponding
Synonym-leaf entry

» Each entry has a lock to ensure atomically
update leaf.

Leat Region

}
Data | T O T) B

Learned index | |@@@@DI

Memory Pool

Insert model pointer

I I I T

— Learned model

~

parameter 1bit 7bit 8bit 48 bit
- > lock| LRN| ptr [LN |
Upper models key | w| b ; Example:
T T 1 T 1 3 entry (8B) [; LT SLT
PLR models LT je| ptr:3 LN:o g 0| slotyse
i 1| ptr:e LN:1 \ﬁé -
VVYVYVVVYV " = ¢ 2| ptr:6 LN:2 > ptr:@ LN:6
[Leaf r‘egion SLT entry () 3| ptr:@ LN:4 x‘v
learned index 4| ptr:@ LN:5 ptr:@ LN:8
>
PhF_ﬂddr = lnum * Lsize + LR34,

13

One Sided Indexing(chl, ch3) — Get(k)

Predict Range

Leaf Region [[

» 1. Predict a range for key based on
Equation Learned Index

» 2. Translate range into leaf address

Memory Node .
Compute Node m !
/\) é [LT SLT]
= /

14

» 3. One sided RDMA read value

One Sided Indexing(chl, ch3) — Put(k,v)

» 1. Fetching like point query without
reading synonym leaves

» 2. determines the leaf to be inserted and

locks leaf by changing lock bit

» 3. Read leaf and its synonym leaves to
ensure data are up to date

» 4. Insert data into the fetched leaves
according to data order and unlock

Predict Range

Learned Index

Memory Node

]

Compute Node

Put(k,v)] [Learned Cache]

15

Asynchronous Retraining(ch?2)

» Key idea: Use circular queue (CirQ) to identify the pending retraining models, and
concurrently retrains models on background.

- (EEREEE el)
r) AN AN

Insert model pointer [LT SLT]retraining[LT SLT]

16

Evaluation

» Experimental Setup
» 3 compute nodes and 3 memory nodes
» 100Gb Mellanox ConnectX-5 IB RNIC

» Workloads
» YCSB, Normal and Lognormal data distributions...

» 8B keys and values

» Comparisons

» Xstore-D(Tree + Learned Index) [OSDI’20] One Sided Read + Two Sided Write
» Sherman(Fine-grained B-link Tree) = [SIGMOD’22] One Sided
» FG(Fine-grained B-link Tree) [SIGMOD’19] One Sided

» EMT-D(eRPC + MassTree) [INSDI’19] Two Sided

Performance in YCSB

» Competitive performance on static workloads

» 1.3x~2.8x improvements on dynamic workloads

B 25

3|

520

=2y 3

S 10 |- N

® el NR

- a ’ \5

s AN
YCSB-A

50% update

L7

AN AN
SIS IS4
e

YCSB-B
5% update

XY

K
i

N
1 N
Ié Rk
ZEN
YCSB-C
0% update

)

s

L JFG A sSherman []EMT-D
XStore-D ROLEX
] S
3 NE
7N 1 NR
N e TN
YCSB-D YCSB-E YCSB-F
5% insert 95% range query Read modify write

18

Performance 1in Various Scenarios

» ROLEX improves insert throughput by 1.8x-4.3x

» ROLEX outperforms the other schemas in write-intensive workloads

Throughput(M ops/s)

il
wn

o
g

-

o D

Tad

=]

FG A SFWIMnEEMT-D

fsss] X Store-D ROLEX

1x107 s5x10° 1x10°
The number of inserts

5x10°

(a) Write-only throughput.

Throughput{M ops/s)

P A %]
L5 B = (R ==

= =]

=

o bt S b b R b

FG 4] Sherman EMT-O
5 X5re-0 ROLEX

Tt St by

bt St

80M10

O30 50450
Read/Write ratios

(c) Hybrid read/write throughput.

19

Scale with CPU cores on compute nodes

» ROLEX efficiently scale with computing resources

k
[]

ask,
[

Throughput{M ops/s)

= L B WO

=
Lh

—|—FG —dp— X Store-D
== Sherman —ss— ROLEX
EMTD

1 2 4 B 16 24
CPU cores on compute nodes

(a) Read throughput.

Throughput(M ops/s)

—il-FG —ifp— ¥ Store-D
—il— Sherman —s— ROLEX
EMTD

1 2 - a8 16 24
CPLU cores on compute node

(b) Write throughput.

20

Conclusion

— Retraining-decoupled Learned

o indexes
Limited CPU on Memory—

Nodes One Sided RDMA index
_ operations

Build Ordered Overloaded bandwidth Asynchronously retraining
KV Store on =% ROLEX for data transferring models on memory nodes
DMS

Execute index operations
atomically

Inconsistency issue
Check old models after
retraining

