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Disaggregated Memory Systems
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Background

Disaggregated Memory Systems

Remote Direct Memory Access(RDMA)
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Background

» Deploying tree-based structure(ordered KV-store) in the disaggregated memory system (Two-sided)

» Memory Node has limited computing resources! Compute Node
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Background

» Deploying tree-based structure(ordered K'V-store) in the Disaggregated Memory System (One-sided)

» Memory Node has limited computing resources!

» Memory consumption on compute node! Get(k) ﬁt}
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Background

» Deploying tree-based structure(ordered KV-store) in the disaggregated memory system (One-sided)
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» Memory Node has limited computing resources! Compute Node Memory Node

» Memory consumption on compute node! Get(k) —»t} g

» Multi RTT reduce performance!
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Background

» Learned Indexes
»  Easy-to-use and small-sized learned models

»  2-4 space-saving than tree-structured indexes

»  High searching speed than B+ tree indexes
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Background

» Deploying Learned Index structure(ordered KV-store) in the disaggregated memory system

» Works well in Get(k)

» How to manage Put(k, v)?
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Background

» Deploying tree-based structure(ordered K'V-store) in the disaggregated memory system

»  Works well in Get(k) B

Compute Node Memory Node
> How to manage Put(k, v)? Get(k) —’1:} e | e :[:j
> Xstore @ OSDI’20 — -
» Read via learned index ;’%‘ B+ tree index Learned index
»  Write via B+ Tree index
» Xstore-D
»  transferring data modification requests to memory Local cache
nodes Sorted Data
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Challenges

» Limited computing resources on memory nodes
Get(k) %{j

» Overloaded bandwidth for data transferring

» Inconsistency issue among different nodes
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ROLEX Design
Overview

» Main Insight: Execute index operations with atomic designs and Asynchronously retrain models by decoupling
the insertion and retraining operations with consistency guarantees.

» Design 1

» Retraining-decoupled Learned Indexes
» Design 2

» One-sided Index Operations
» Design 3

» Asynchronous Retraining
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Retraining-decoupled Learned Indexes(chl)
» Key idea: Modify training algorithm and add some constraints on data movements.

» Train the piecewise linear regression
(PLR) models

» Adding a bias (represented as J) to the
prediction calculation

position

» Moving data within fixed-size(d) leaves

» Synonym-leaf sharing
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One Sided Indexing

» Upper models is trained on smallest keys

> LT and SLT store the leaf numbers to
access leaves

» Each leaf entry points to its corresponding
Synonym-leaf entry

» Each entry has a lock to ensure atomically
update leaf.
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One Sided Indexing(chl, ch3) — Get(k)

Predict Range

Leaf Region [[

» 1. Predict a range for key based on
Equation Learned Index

» 2. Translate range into leaf address
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One Sided Indexing(chl, ch3) — Put(k,v)

» 1. Fetching like point query without
reading synonym leaves

» 2. determines the leaf to be inserted and

locks leaf by changing lock bit

» 3. Read leaf and its synonym leaves to
ensure data are up to date

» 4. Insert data into the fetched leaves
according to data order and unlock

Predict Range

Learned Index

Memory Node

]

Compute Node

Put(k,v) ] [ Learned Cache ]

15



Asynchronous Retraining(ch?2)

» Key idea: Use circular queue (CirQ) to identify the pending retraining models, and
concurrently retrains models on background.
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Evaluation

» Experimental Setup
» 3 compute nodes and 3 memory nodes
» 100Gb Mellanox ConnectX-5 IB RNIC

» Workloads
» YCSB, Normal and Lognormal data distributions...

» 8B keys and values

» Comparisons

» Xstore-D(Tree + Learned Index) [OSDI’20] One Sided Read + Two Sided Write
» Sherman(Fine-grained B-link Tree) = [SIGMOD’22] One Sided
» FG(Fine-grained B-link Tree) [SIGMOD’19]  One Sided

» EMT-D(eRPC + MassTree) [INSDI’19] Two Sided



Performance in YCSB

» Competitive performance on static workloads

» 1.3x~2.8x improvements on dynamic workloads
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Performance 1in Various Scenarios

» ROLEX improves insert throughput by 1.8x-4.3x

» ROLEX outperforms the other schemas in write-intensive workloads
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Scale with CPU cores on compute nodes

» ROLEX efficiently scale with computing resources
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Conclusion

— Retraining-decoupled Learned

o indexes
Limited CPU on Memory—

Nodes One Sided RDMA index
_ operations

Build Ordered Overloaded bandwidth Asynchronously retraining
KV Store on =% ROLEX for data transferring models on memory nodes
DMS

Execute index operations
atomically

Inconsistency issue
Check old models after
retraining



