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Background
Disaggregated Memory Systems

✓ High resource Utilization
✓ Scalability
✓ Fault Isolation
✓ Data Sharing
✓ …

Memory Pool

Compute Pool
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Disaggregated Memory Systems

RNIC

Remote Direct Memory Access(RDMA)

2



3

Background

Ø Deploying tree-based structure(ordered KV-store) in the disaggregated memory system

Compute Node Memory Node

B+ Tree
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Sorted Data

(Two-sided)

Ø Memory Node has limited computing resources!

RNIC RNICGet(k)
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Background

Ø Deploying tree-based structure(ordered KV-store) in the disaggregated memory system

Compute Node Memory Node

B+ Tree

1 3 5 …8
Sorted Data

Get(k)

(One-sided)

Ø Memory Node has limited computing resources!
RNIC

Local cache

miss

RNIC

Ø Multi RTT reduce performance!

Ø Memory consumption on compute node!



Background
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Ø Learned Indexes
Ø Easy-to-use and small-sized learned models
Ø 2-4 space-saving than tree-structured indexes
Ø High searching speed than B+ tree indexes

K

predict

predict+ε

predict-ε
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Background

Ø Deploying Learned Index structure(ordered KV-store) in the disaggregated memory system

Compute Node Memory Node

1 3 5 …8
Sorted Data

Ø Works well in Get(k)

RNIC RNICGet(k)

Learned index

Local cache

predict

Ø How to manage Put(k, v)?
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Background

Ø Deploying tree-based structure(ordered KV-store) in the disaggregated memory system

Compute Node Memory Node

1 3 5 …8
Sorted Data

Ø Works well in Get(k)

RNIC RNICGet(k)

Learned index

Local cache

predict

Ø Xstore @ OSDI’20
Ø Read via learned index
Ø Write via B+ Tree index

B+ tree index

Ø Xstore-D

Ø transferring data modification requests to memory 
nodes

Ø How to manage Put(k, v)?

Ø computing resources in the memory nodes are 
insufficient



Challenges
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Ø Limited computing resources on memory nodes

Ø Overloaded bandwidth for data transferring

Ø Inconsistency issue among different nodes

Compute Node Memory Node

1 3 5 …8
Sorted Data

RNIC RNIC

Local cache

predict
B+ tree index

Get(k)
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ROLEX Design 
Overview
Ø Main Insight: Execute index operations with atomic designs and Asynchronously retrain models by decoupling 

the insertion and retraining operations with consistency guarantees.

Ø Design 1
Ø Retraining-decoupled Learned Indexes

Ø Design 2

Ø One-sided Index Operations

Ø Design 3

Ø Asynchronous Retraining



Retraining-decoupled Learned Indexes(ch1)

Ø Train the piecewise linear regression 
(PLR) models

Ø Adding a bias (represented as δ) to the 
prediction calculation

Ø Moving data within fixed-size(δ) leaves

Ø Synonym-leaf sharing

Ø Key idea: Modify training algorithm and add some constraints on data movements. 

Contain δ data 12
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One Sided Indexing

Ø Upper models is trained on smallest keys

Ø LT and SLT store the leaf numbers to 
access leaves

Ø Each leaf entry points to its corresponding 
Synonym-leaf entry 

Ø Each entry has a lock to ensure atomically 
update leaf.
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One Sided Indexing(ch1, ch3) – Get(k)

LT SLT

LT SLT

Get

Compute Node

Memory Node

Learned Index

Leaf Region

Predict

Translate

RDMA READ

Predict Range

Ø 1. Predict a range for key based on 
Equation

Ø 2. Translate range into leaf address

Ø 3. One sided RDMA read value
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One Sided Indexing(ch1, ch3) – Put(k,v)

LT SLT

Put(k,v)

Compute Node

Memory Node

Learned Index

Leaf Region

Predict Range

Ø 1. Fetching like point query without 
reading synonym leaves

Ø 2. determines the leaf to be inserted and 
locks leaf by changing lock bit

Ø 3. Read leaf and its synonym leaves to 
ensure data are up to date

Learned Cache

Ø 4. Insert data into the fetched leaves 
according to data order and unlock



Asynchronous Retraining(ch2)

Ø Key idea: Use circular queue (CirQ) to identify the pending retraining models, and 
concurrently retrains models on background.

alloc_num L3 L5 …

retrainingLT LT SLTSLT

Old model New model

L8
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Evaluation

Ø Experimental Setup
Ø 3 compute nodes and 3 memory nodes
Ø 100Gb Mellanox ConnectX-5 IB RNIC

ØWorkloads
Ø YCSB, Normal and Lognormal data distributions…
Ø 8B keys and values

Ø Comparisons
Ø Xstore-D(Tree + Learned Index)           [OSDI’20]          One Sided Read + Two Sided Write
Ø Sherman(Fine-grained B-link Tree)      [SIGMOD’22]    One Sided 
Ø FG(Fine-grained B-link Tree)               [SIGMOD’19]     One Sided 
Ø EMT-D(eRPC + MassTree)                   [NSDI’19]           Two Sided 
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Performance in YCSB

Ø Competitive performance on static workloads

Ø 1.3x~2.8x improvements on dynamic workloads 

50% update 5% update 0% update 5% insert 95% range query Read modify write
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Performance in Various Scenarios

Ø ROLEX improves insert throughput by 1.8x-4.3x

Ø ROLEX outperforms the other schemas in write-intensive workloads
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Scale with CPU cores on compute nodes

Ø ROLEX efficiently scale with computing resources
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Conclusion

Build Ordered 
KV Store on 
DMS

ROLEX

Limited CPU on Memory 
Nodes

Retraining-decoupled Learned 
indexes

Overloaded bandwidth 
for data transferring

One Sided RDMA index 
operations

Asynchronously retraining 
models on memory nodes

Inconsistency issue

Execute index operations 
atomically

Check old models after 
retraining
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