
ROLEX: A Scalable RDMA-oriented
Learned Key-Value Store for

Disaggregated Memory Systems

Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng,
Huazhong University of Science and Technology

FAST’23 Best Paper
Speaker: Jun Wu

Background
Disaggregated Memory Systems

✓ High resource Utilization
✓ Scalability
✓ Fault Isolation
✓ Data Sharing
✓ …

Memory Pool

Compute Pool

1

Background

Memory Pool

Compute Pool

Two-sided RDMA

RNIC

client server

One-sided RDMA

RNIC RNIC

client server

Disaggregated Memory Systems

RNIC

Remote Direct Memory Access(RDMA)

2

3

Background

Ø Deploying tree-based structure(ordered KV-store) in the disaggregated memory system

Compute Node Memory Node

B+ Tree

1 3 5 …8
Sorted Data

(Two-sided)

Ø Memory Node has limited computing resources!

RNIC RNICGet(k)

4

Background

Ø Deploying tree-based structure(ordered KV-store) in the Disaggregated Memory System

Compute Node Memory Node

B+ Tree

1 3 5 …8
Sorted Data

Get(k)

(One-sided)

Ø Memory Node has limited computing resources!

RNIC RNIC

Local cache

pos

Ø Memory consumption on compute node!

5

Background

Ø Deploying tree-based structure(ordered KV-store) in the disaggregated memory system

Compute Node Memory Node

B+ Tree

1 3 5 …8
Sorted Data

Get(k)

(One-sided)

Ø Memory Node has limited computing resources!
RNIC

Local cache

miss

RNIC

Ø Multi RTT reduce performance!

Ø Memory consumption on compute node!

Background

6

Ø Learned Indexes
Ø Easy-to-use and small-sized learned models
Ø 2-4 space-saving than tree-structured indexes
Ø High searching speed than B+ tree indexes

K

predict

predict+ε

predict-ε

7

Background

Ø Deploying Learned Index structure(ordered KV-store) in the disaggregated memory system

Compute Node Memory Node

1 3 5 …8
Sorted Data

Ø Works well in Get(k)

RNIC RNICGet(k)

Learned index

Local cache

predict

Ø How to manage Put(k, v)?

8

Background

Ø Deploying tree-based structure(ordered KV-store) in the disaggregated memory system

Compute Node Memory Node

1 3 5 …8
Sorted Data

Ø Works well in Get(k)

RNIC RNICGet(k)

Learned index

Local cache

predict

Ø Xstore @ OSDI’20
Ø Read via learned index
Ø Write via B+ Tree index

B+ tree index

Ø Xstore-D

Ø transferring data modification requests to memory
nodes

Ø How to manage Put(k, v)?

Ø computing resources in the memory nodes are
insufficient

Challenges

10

Ø Limited computing resources on memory nodes

Ø Overloaded bandwidth for data transferring

Ø Inconsistency issue among different nodes

Compute Node Memory Node

1 3 5 …8
Sorted Data

RNIC RNIC

Local cache

predict
B+ tree index

Get(k)

11

ROLEX Design
Overview
Ø Main Insight: Execute index operations with atomic designs and Asynchronously retrain models by decoupling

the insertion and retraining operations with consistency guarantees.

Ø Design 1
Ø Retraining-decoupled Learned Indexes

Ø Design 2

Ø One-sided Index Operations

Ø Design 3

Ø Asynchronous Retraining

Retraining-decoupled Learned Indexes(ch1)

Ø Train the piecewise linear regression
(PLR) models

Ø Adding a bias (represented as δ) to the
prediction calculation

Ø Moving data within fixed-size(δ) leaves

Ø Synonym-leaf sharing

Ø Key idea: Modify training algorithm and add some constraints on data movements.

Contain δ data 12

13

One Sided Indexing

Ø Upper models is trained on smallest keys

Ø LT and SLT store the leaf numbers to
access leaves

Ø Each leaf entry points to its corresponding
Synonym-leaf entry

Ø Each entry has a lock to ensure atomically
update leaf.

14

One Sided Indexing(ch1, ch3) – Get(k)

LT SLT

LT SLT

Get

Compute Node

Memory Node

Learned Index

Leaf Region

Predict

Translate

RDMA READ

Predict Range

Ø 1. Predict a range for key based on
Equation

Ø 2. Translate range into leaf address

Ø 3. One sided RDMA read value

15

One Sided Indexing(ch1, ch3) – Put(k,v)

LT SLT

Put(k,v)

Compute Node

Memory Node

Learned Index

Leaf Region

Predict Range

Ø 1. Fetching like point query without
reading synonym leaves

Ø 2. determines the leaf to be inserted and
locks leaf by changing lock bit

Ø 3. Read leaf and its synonym leaves to
ensure data are up to date

Learned Cache

Ø 4. Insert data into the fetched leaves
according to data order and unlock

Asynchronous Retraining(ch2)

Ø Key idea: Use circular queue (CirQ) to identify the pending retraining models, and
concurrently retrains models on background.

alloc_num L3 L5 …

retrainingLT LT SLTSLT

Old model New model

L8

16

Evaluation

Ø Experimental Setup
Ø 3 compute nodes and 3 memory nodes
Ø 100Gb Mellanox ConnectX-5 IB RNIC

ØWorkloads
Ø YCSB, Normal and Lognormal data distributions…
Ø 8B keys and values

Ø Comparisons
Ø Xstore-D(Tree + Learned Index) [OSDI’20] One Sided Read + Two Sided Write
Ø Sherman(Fine-grained B-link Tree) [SIGMOD’22] One Sided
Ø FG(Fine-grained B-link Tree) [SIGMOD’19] One Sided
Ø EMT-D(eRPC + MassTree) [NSDI’19] Two Sided

17

Performance in YCSB

Ø Competitive performance on static workloads

Ø 1.3x~2.8x improvements on dynamic workloads

50% update 5% update 0% update 5% insert 95% range query Read modify write

18

Performance in Various Scenarios

Ø ROLEX improves insert throughput by 1.8x-4.3x

Ø ROLEX outperforms the other schemas in write-intensive workloads

19

Scale with CPU cores on compute nodes

Ø ROLEX efficiently scale with computing resources

20

Conclusion

Build Ordered
KV Store on
DMS

ROLEX

Limited CPU on Memory
Nodes

Retraining-decoupled Learned
indexes

Overloaded bandwidth
for data transferring

One Sided RDMA index
operations

Asynchronously retraining
models on memory nodes

Inconsistency issue

Execute index operations
atomically

Check old models after
retraining

21

