Speculative Recovery:

Cheap, Highly Available Fault Tolerance with
Disaggregated Storage

USENIX ATC’22

2022.05.24

Background

Application Fault-tolerance

Traditional technique - Application-level Replication
* Replicate the application across multiple compute instances

e Drawbacks:

‘ requests
» Costly

Primary instance Backup instance

> Separate implementation ‘ B vsa \ ‘ B vsa \
- B B

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

—

Background

Recovery From Disaggregated Storage (REDS)

Opportunities
* Disaggregated storage

* Fast provision of computer instances

. MySQL
m = VS

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

. MySQL
m =

I Network-attached

Computer instance

Data is replicated

USENIX ATC’22

Background

Recovery From Disaggregated Storage (REDS)

Primary instance Backup instance

@) Primary instance . MysQL . MysQL & Backup instance

is failed is spawned

() Detach the disk

() Attach the disk to the Backup instance

. . . Recover the application

Strengths
» Low cost

» Generally applicable to crash-consistent applications

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

Background

Recovery From Disaggregated Storage (REDS)
Drawback — Low availability

* Failover must be sequential

* The future 1s unknown

Primary instance Backup instance

' Timeout . MysQL . MysQL
() Primary instance

is failed

() Backup instance

. . - ’ spawned

2

() Detach the disk

() Attach the disk to the Backup instance

\ 4
. . . Recover the application
! Recover Latency

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

Main Idea

Speculative Recovery

» On primary downtime detection, backup initiates recovery from cloned disk, possibly
concurrently if primary still up.

Aim: Increase the availability of apps that achieve cheap fault tolerance using REDS

Primary instance Backup instance

. MysQL Wait out . Re:start on
unresponsiveness new instance

- | I I @ Proceed in parallel I
A
\ 4
i) Create a clone disk

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

Main Idea

Speculative Recovery

Challenges
* How to ensure application correctness ?

* How to ensure good disk performance for the backup instancefto recover the application ?

Key Designs

Introduce two new disaggregated storage primitives:
» super : creating a superposition by creating a disk clone

» collapse : collapsing the superposition by tracking writes to the primary’s disk

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

Architecture Overview

Speculative Recovery System

The instance pool

Primary instance Backup instance

The failure monitor

The storage cluster

Tracking primary writes

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

Key Design 1: Creating a Disk Superposition - super

Copy-On-Write (COW)

Existing designs for COW disk clones perform very poorly for recovery workloads

* Copy dirtied blocks to different storage shards _
Primary instance Backup instance

Result in considerable overhead

* Each dirtied block requires a blocking operation to

allocate a new location in the storage area network

Eliminate parallelism benefit for concurrent writes

Parent Disk allocation Child Disk allocation '® Fast to create

table table & Bad I/0
Block 1 : shard X Block 1’ : shard Z performance
Block 2 : shard X Block 2 : shard X

Block 3 : shard Y Block 3 : shard Y Block1] |Block2| |Block3| |Block1’

From From From From

datashard X datashard X datashardY datashardz

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

Collocated-Clone

Reuse parent’s allocation table to collocate child blocks with their corresponding parent blocks.

copying a dirtied block

* No need to traverse the network again when

* Never require a blocking allocation operation

Parent Disk allocation
table

Block 1 : shard X
Block 2 : shard X
Block 3 : shard Y

data shard Y

locally copied
& writed

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

Key Design 1: Creating a Disk Superposition - super

Backup instance

Primary instance

Block 2 Block 3 Block 1’

Block 1

From From From From
data shard X datashard X datashardY datashard X

USENIX ATC’22

Key Design 2: Collapsing a Superposition - collapse

Problem: Letting parent and child disks diverge in superposition introduces potential app inconsistency,

which must be hidden from clients

 dirty bit: whether writes have been applied to the parent disk since the creation of the child.]_ tracking
shard

* allow-write bit: whether have permission to write on the parent disk

Tracking primary writes: when super, before collapse
* Set dirty bit < 0, allow-write bit «— 1

* When a shard of the parent disk receives a write request: Set dirty bit = 1

Atomic promotion: when collapse
e Check dirty bit:
» 0 : deallocating the parent disk, proceeding with promotion of backup, setting allow-write bit «— 0

» 1 : deallocating the child disk, aborting recovery

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

Evaluation

Experimental Setup

Implement a prototype speculative recovery system: SpecREDS
* Based on Ceph’s block device interface rbd

Compare 3 disk types
* rbd (aregular disk)

* rbd-clone (with Ceph’s existing clone implementation) Testing 3 database applications
* super (with collocated-clone) * MySQL (with InnoDB)
Compare 3 systems * PostgreSQL

* REDS (using rbd) * MariaDB (with RocksDB)

* SpecREDS (using super)
* Oracle (using rbd)

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

Evaluation

ance rbd —¢— super —¢— rbd-clone

Read Write

: | . | | | g0 90 05 99 99 999 99 0 o0 05 o9 9999999

Disk-level Perform
50 100
g6 40 - 80
> ‘ -
g 4 - 30 7 60 7
k= 20 - 40 T
= 2 - y -
5 10 - 20 7
0 I | I I | I 0

4 8 16 32 48 6 1 2 4 8 16 3

Write size (KB) # of concurrent writes

Single COW write latency Concurrent COW writes

Percentile Percentile

Performance on real recovery workloads

The disk-level improvements of super can achieve recovery latency very close to a regular rbd
disk in real failure scenarios

USENIX ATC’22

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

Evaluation

Application Recovery Latency

regular disk collocated-clone Ceph’s existing clone
] " 21 rbd Bl super N_N\] rbd-clone
* Super 1mproves periormance 160 - - 160
P P P — MySQL j PostgresN N | MariaDB :
] 2 | S | _
over rbd-clone 2}120__ - :] N : 120
« Recovery on super is only 2 | N)i |
: = 801 N] 80
slightly slower than recovery] TN | j
> - ! N\ ! '
on rbd by 13% on average. S 40) | 40
& j I N ! m ﬂ | j
0- -0
Time it takes S/.2G S/1G P/1G S/.4G S/2G P/5G S/5G P/1G P/5G
to complete ‘ ‘ ‘
recovery Failure Type: Size of the
S : docker stop write-ahead-
P : kernel panic log in GB

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

Evaluation

End-to-end Failover Latency

Long timeout : ~ 1 min
Short timeout : ~5 s

 the failover latency of SpecREDS (rbd-

[Z73 REDS Hll SpecREDS
clone) 1s consistently the highest @ [N_1 SpecREDS (rbd-clone) | EX1 Oracle
. o 2 160 . — . N 160
* SpecREDS achieves significantly lower £ 1 N Timeout=1min ; | Timeout=Ss |
i - 1 Y (Jm | N i
failover latency when REDS uses a medium 2 207 ¢[N® Nap | N am A ® | 120
. > 1 N i [
timeout or for FP when REDS uses a short § 80 1 y i : N -80
timeout g 40 Y N : N 5-40
. 1 =] I N i
SpecREDS i1s always close to the oracle 2 0 / =
lower bound < long short long long (FP) short
, Recovery length
adds latencies
together Long recovery : ~ 1 min

Short recovery : ~5's

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

Paper Summary

Application-level cost
Replication

» REDS
applicability ‘

1 availability performance
» Super —> Collocated-clone
Speculative Recovery =—> Challenges —I \ ;
Main Idea » Collapse —> Dirty bit
l correctness l
Speculative Recovery System
Analysis
1 . » Disk-level performance ?
Evaluation

» Application Recovery Latency ?

» End-to-end Failover Latency ?

» Other Overhead ?

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

Why choose
* Knowledge of fault tolerance techniques (REDS)

* Improvements to cloud-edge storage
File recovery

? Application recovery

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage USENIX ATC’22

