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Background

Application Fault-tolerance

Traditional technique - Application-level Replication
* Replicate the application across multiple compute instances

e Drawbacks:

‘ requests
» Costly

Primary instance Backup instance

> Separate implementation ‘ B vsa \ ‘ B vsa \
- B B
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Background

Recovery From Disaggregated Storage (REDS)

Opportunities
* Disaggregated storage

* Fast provision of computer instances

. MySQL
m = VS
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I Network-attached

Computer instance

Data is replicated
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Background

Recovery From Disaggregated Storage (REDS)

Primary instance Backup instance

@) Primary instance . MysQL . MysQL & Backup instance

is failed is spawned

() Detach the disk

() Attach the disk to the Backup instance

. . . Recover the application

Strengths
» Low cost

» Generally applicable to crash-consistent applications
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Background

Recovery From Disaggregated Storage (REDS)
Drawback — Low availability

* Failover must be sequential

* The future 1s unknown

Primary instance Backup instance

' Timeout . MysQL . MysQL
() Primary instance

is failed

() Backup instance

. . - ’ spawned

2

() Detach the disk

() Attach the disk to the Backup instance

\ 4
. . . Recover the application
! Recover Latency
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Main Idea

Speculative Recovery

» On primary downtime detection, backup initiates recovery from cloned disk, possibly
concurrently if primary still up.

Aim: Increase the availability of apps that achieve cheap fault tolerance using REDS

Primary instance Backup instance

. MysQL Wait out . Re:start on
unresponsiveness new instance

- | I I @ Proceed in parallel I
A
\ 4
i) Create a clone disk
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Main Idea

Speculative Recovery

Challenges
* How to ensure application correctness ?

* How to ensure good disk performance for the backup instancefto recover the application ?

Key Designs

Introduce two new disaggregated storage primitives:
» super : creating a superposition by creating a disk clone

» collapse : collapsing the superposition by tracking writes to the primary’s disk
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Architecture Overview

Speculative Recovery System

The instance pool

Primary instance Backup instance

The failure monitor

The storage cluster

Tracking primary writes
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Key Design 1: Creating a Disk Superposition - super

Copy-On-Write (COW)

Existing designs for COW disk clones perform very poorly for recovery workloads

* Copy dirtied blocks to different storage shards _
Primary instance Backup instance

Result in considerable overhead

* Each dirtied block requires a blocking operation to

allocate a new location in the storage area network

Eliminate parallelism benefit for concurrent writes

Parent Disk allocation Child Disk allocation '® Fast to create

table table & Bad I/0
Block 1 : shard X Block 1’ : shard Z performance
Block 2 : shard X Block 2 : shard X

Block 3 : shard Y Block 3 : shard Y Block1] |Block2| |Block3| |Block1’

From From From From

datashard X datashard X datashardY datashardz
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Collocated-Clone

Reuse parent’s allocation table to collocate child blocks with their corresponding parent blocks.

copying a dirtied block

* No need to traverse the network again when

* Never require a blocking allocation operation

Parent Disk allocation
table

Block 1 : shard X
Block 2 : shard X
Block 3 : shard Y

data shard Y

locally copied
& writed
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Key Design 1: Creating a Disk Superposition - super

Backup instance

Primary instance

Block 2 Block 3 Block 1’

Block 1

From From From From
data shard X datashard X datashardY datashard X
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Key Design 2: Collapsing a Superposition - collapse

Problem: Letting parent and child disks diverge in superposition introduces potential app inconsistency,

which must be hidden from clients

 dirty bit: whether writes have been applied to the parent disk since the creation of the child. ]_ tracking
shard

* allow-write bit: whether have permission to write on the parent disk

Tracking primary writes: when super, before collapse
* Set dirty bit < 0, allow-write bit «— 1

* When a shard of the parent disk receives a write request: Set dirty bit = 1

Atomic promotion: when collapse
e Check dirty bit:
» 0 : deallocating the parent disk, proceeding with promotion of backup, setting allow-write bit «— 0

» 1 : deallocating the child disk, aborting recovery
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Evaluation

Experimental Setup

Implement a prototype speculative recovery system: SpecREDS
* Based on Ceph’s block device interface rbd

Compare 3 disk types
* rbd (aregular disk)

* rbd-clone (with Ceph’s existing clone implementation) Testing 3 database applications
* super (with collocated-clone) * MySQL (with InnoDB)
Compare 3 systems * PostgreSQL

* REDS (using rbd ) * MariaDB (with RocksDB)

* SpecREDS (using super)
* Oracle (using rbd)
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Evaluation

ance rbd —¢— super —¢— rbd-clone

Read Write
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Write size (KB) # of concurrent writes

Single COW write latency Concurrent COW writes

Percentile Percentile

Performance on real recovery workloads

The disk-level improvements of super can achieve recovery latency very close to a regular rbd
disk in real failure scenarios
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Evaluation

Application Recovery Latency

regular disk collocated-clone  Ceph’s existing clone
] " 21 rbd Bl super N_N\] rbd-clone
* Super 1mproves periormance 160 - - 160
P P P — MySQL j PostgresN N | MariaDB :
] 2 | S | _
over rbd-clone 2}120__ - : ] N : 120
« Recovery on super is only 2 | N )i |
: = 801 N ] 80
slightly slower than recovery ] TN | j
> - ! N\ ! '
on rbd by 13% on average. S 40 ) | 40
& j I N ! m ﬂ | j
0- -0
Time it takes S/.2G S/1G P/1G S/.4G S/2G P/5G S/5G P/1G P/5G
to complete ‘ ‘ ‘
recovery Failure Type: Size of the
S : docker stop write-ahead-
P : kernel panic log in GB
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Evaluation

End-to-end Failover Latency

Long timeout : ~ 1 min
Short timeout : ~5 s

 the failover latency of SpecREDS (rbd-

[Z73 REDS Hll SpecREDS
clone) 1s consistently the highest @ [N_1 SpecREDS (rbd-clone) | EX1 Oracle
. o 2 160 . — . N 160
* SpecREDS achieves significantly lower £ 1 N Timeout=1min ; | Timeout=Ss |
i - 1 Y (Jm | N i
failover latency when REDS uses a medium 2 207 ¢[N® Nap | N am A ® | 120
. > 1 N i [
timeout or for FP when REDS uses a short § 80 1 y i : N -80
timeout g 40 Y N : N 5-40
. 1 = ] I N i
SpecREDS i1s always close to the oracle 2 0 / =
lower bound < long short long long (FP) short
, Recovery length
adds latencies
together Long recovery : ~ 1 min

Short recovery : ~5's
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Paper Summary

Application-level cost
Replication

» REDS
applicability ‘

1 availability performance
» Super —> Collocated-clone
Speculative Recovery =—> Challenges —I \ ;
Main Idea » Collapse —> Dirty bit
l correctness l
Speculative Recovery System
Analysis
1 . » Disk-level performance ?
Evaluation

» Application Recovery Latency ?

» End-to-end Failover Latency ?

» Other Overhead ?
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Why choose
* Knowledge of fault tolerance techniques (REDS)

* Improvements to cloud-edge storage
File recovery

?  Application recovery
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