
Speculative Recovery:
Cheap, Highly Available Fault Tolerance with

Disaggregated Storage

USENIX ATC’22

1

2022.05.24

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

2

USENIX ATC’22

Application Fault-tolerance

Background

Traditional technique - Application-level Replication
• Replicate the application across multiple compute instances

MySQL MySQL

Primary instance Backup instance

requests

logs

• Drawbacks:
Ø Costly
Ø Separate implementation

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

3

USENIX ATC’22

Recovery From Disaggregated Storage (REDS)

Background

Opportunities
• Disaggregated storage
• Fast provision of computer instances

MySQL

MySQL

vs

Computer instance

Storage pool

Network-a<ached

Data is replicated

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

4

USENIX ATC’22

Recovery From Disaggregated Storage (REDS)

Background

Strengths
Ø Low cost
Ø Generally applicable to crash-consistent applications

MySQLPrimary instance
is failed

MySQL

Primary instance Backup instance

1⃣ Backup instance
is spawned

2⃣

Detach the disk3⃣

A<ach the disk to the Backup instance
Recover the applicaDon

4⃣

❌

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

5

USENIX ATC’22

Recovery From Disaggregated Storage (REDS)

Background

Drawback – Low availability
• Failover must be sequential
• The future is unknown

MySQL
Primary instance
is failed

MySQL

Primary instance Backup instance

1⃣ Backup instance
is spawned

2⃣

Detach the disk3⃣

A<ach the disk to the Backup instance
Recover the applicaDon

4⃣

❌
⚠ Timeout

⚠ Recover Latency

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

6

USENIX ATC’22

Speculative Recovery

Main Idea

Aim: Increase the availability of apps that achieve cheap fault tolerance using REDS

Ø On primary downtime detection, backup initiates recovery from cloned disk, possibly
concurrently if primary still up.

MySQL

Primary instance

❓
MySQL

Backup instance

Create a clone disk

Wait out
unresponsiveness

Proceed in parallel

Restart on
new instance

1⃣

2⃣

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

7

USENIX ATC’22

Speculative Recovery

Main Idea

Challenges
• How to ensure application correctness ?
• How to ensure good disk performance for the backup instance to recover the application ?

Key Designs
Introduce two new disaggregated storage primitives:

Ø super : creating a superposition by creating a disk clone

Ø collapse : collapsing the superposition by tracking writes to the primary’s disk

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

8

USENIX ATC’22

Speculative Recovery System

Architecture Overview

MySQL MySQL

The storage cluster

The instance pool
Primary instance Backup instance

heartbeat()

❌

spawn()

The failure monitor

super()

collapse()

Tracking primary writes

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

9

USENIX ATC’22

Key Design 1: Creating a Disk Superposition - super

Copy-On-Write (COW)

Block 1 Block 2 Block 3

Primary instance Backup instance

Block 1’

👍 Fast to create

Restart

🙅 Bad I/O
performance

Existing designs for COW disk clones perform very poorly for recovery workloads
• Copy dirtied blocks to different storage shards
 Result in considerable overhead
• Each dirtied block requires a blocking operation to

allocate a new location in the storage area network
 Eliminate parallelism benefit for concurrent writes

From
data shard X

From
data shard X

From
data shard Y

From
data shard Z

Parent Disk allocaDon
table

Block 1 : shard X
Block 2 : shard X
Block 3 : shard Y
…

Child Disk allocaDon
table

Block 1’ : shard Z
Block 2 : shard X
Block 3 : shard Y
…

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

10

USENIX ATC’22

Key Design 1: Creating a Disk Superposition - super

Collocated-Clone

Block 1 Block 2 Block 3

Primary instance Backup instance

Block 1’

Reuse parent’s allocation table to collocate child blocks with their corresponding parent blocks.

• No need to traverse the network again when
copying a dirtied block

• Never require a blocking allocation operation

From
data shard X

From
data shard X

From
data shard Y

From
data shard X

data shard Y

Block 1

Block 1’
…

Parent Disk allocaDon
table

Block 1 : shard X
Block 2 : shard X
Block 3 : shard Y
…

locally copied
& writed

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

11

USENIX ATC’22

Key Design 2: Collapsing a Superposition - collapse

Problem: Letting parent and child disks diverge in superposition introduces potential app inconsistency,
which must be hidden from clients

Tracking primary writes:
• Set dirty bit ← 0, allow-write bit ← 1
• When a shard of the parent disk receives a write request: Set dirty bit = 1

when super, before collapse

• dirty bit: whether writes have been applied to the parent disk since the creation of the child.
• allow-write bit: whether have permission to write on the parent disk

Atomic promotion:
• Check dirty bit:

Ø 0 : deallocating the parent disk, proceeding with promotion of backup, setting allow-write bit ← 0
Ø 1 : deallocating the child disk, aborting recovery

when collapse

tracking
shard

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

12

USENIX ATC’22

Evaluation

Experimental Setup
Implement a prototype speculative recovery system: SpecREDS
• Based on Ceph’s block device interface rbd

Compare 3 disk types
• rbd (a regular disk)
• rbd-clone (with Ceph’s existing clone implementation)
• super (with collocated-clone)

Testing 3 database applications
• MySQL (with InnoDB)
• PostgreSQL
• MariaDB (with RocksDB)

Compare 3 systems
• REDS (using rbd)
• SpecREDS (using super)
• Oracle (using rbd)

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

13

USENIX ATC’22

Evaluation

Disk-level Performance

Single COW write latency Concurrent COW writes Performance on real recovery workloads

WriteRead

The disk-level improvements of super can achieve recovery latency very close to a regular rbd
disk in real failure scenarios

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

14

USENIX ATC’22

Evaluation

Application Recovery Latency
regular disk collocated-clone Ceph’s existing clone

Time it takes
to complete

recovery Failure Type:
S : docker stop
P : kernel panic

Size of the
write-ahead-

log in GB

• super improves performance
over rbd-clone

• Recovery on super is only
slightly slower than recovery
on rbd by 13% on average.

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

15

USENIX ATC’22

Evaluation

End-to-end Failover Latency

adds latencies
together Long recovery : ~ 1 min

Short recovery : ~ 5 s

Long timeout : ~ 1 min
Short timeout : ~ 5 s

• the failover latency of SpecREDS (rbd-
clone) is consistently the highest

• SpecREDS achieves significantly lower
failover latency when REDS uses a medium
timeout or for FP when REDS uses a short
timeout

• SpecREDS is always close to the oracle
lower bound

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

16

USENIX ATC’22

Paper Summary

Application-level
Replication REDS

Speculative Recovery

Speculative Recovery System

Super Collocated-clone

Collapse Dirty bit

Analysis

Evaluation
Disk-level performance ?

Application Recovery Latency ?

End-to-end Failover Latency ?

Other Overhead ?

Challenges

cost

applicability

availability

Main Idea

performance

correctness

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

17

USENIX ATC’22

About

Why choose
• Knowledge of fault tolerance techniques (REDS)

• Improvements to cloud-edge storage

File recovery

Application recovery

✅

❓

