VBASE: Unifying Online Vector Similarity Search
and Relational Queries via Relaxed Monotonicity

OSDI '23

Background — Vector Search

»\Vector search
* Find K nearest vectors in a dataset.

»High-dimension vector

« Deep learning maps data into high-dimension vectors and achieve complex semantic
analysis through similar queries of high-dimensional vectors.

* Queries on high-dimensional vectors become the cornerstone for many important online
services.

»Problem of online high-dimension vector search services
« Strict latency conflicts with the inherently high cost of exact search algorithm.
» Force users settle on approximate query results on high-dimensional vectors.

»Approximate Nearest Neighbor Search - ANNS
» Find K most similar vectors in a dataset, Top-K.
« Sacrifice search accuracy for lower latency.

Background — Index of Database or ANNS System

»Index of database system
« Elements in indexes are scalars.
« Use monotonic index like B-tree, B+-tree and more.
» Traverse the data-set guided by the index monotonically along a certain direction.

»Index of ANNS system

» Elements in indexes are vectors.
* Index are often organized as a graph or cluster-based irreular structure.
» Traversing such vector indexes does not guarantee a strict monotonic order.

Background — Database System + ANNS

%4
»Top K search with filter conditions \
» Find the most similar K cups for less than ¥ 100) \
»EXisting database systems that supports ANNS (Y1000 <)
 First, set up a tentative index by using TopK interface of ANNS system. ‘ ontent e

« Second, check the prices of K products in the index and filter out x
products that meet the price below ¥ 100.

broceoli 1

MIHEARARIRAT 316 785 S16MIHEFRIEM 5 18
WATESARREEE BAERIWTHFREE

v24.9 sEm es0r+2 ¥ 19.9 5650 EE15+%

(] E3

5k E 10 FEEARRE HERE > B E1T5 RNTEFEALRE B >

a1 Rl 128 205 , \
~-.:L' K &

Problem

>t is difficult to predict the right size of K™ for the tentative index.
« Howtoensure K —x =K ?
» choosing a very large K or perform trial-and-error with different sizes of K.
» Both methods can lead to excessive data access and computations.

distance

Motivation

»Well-designed vector indexes include a two-phase traversal pattern.

w n.

E .

@ .

2 * Phase 1: approach the target vector region

s approximately in spite of large oscillations.
KEC-UL‘.- -1UIZJUt 6000 8000 10000 0 25 30 75 tlUv-‘J 125 150 175 200
SLEPS Steps Phase 2: stabilize and steadily departs from the

(a) FAISS IVFFlat (b) HNSW target vector region in an approximate way.

Figure 1: Traversal patterns of two vector indices.

Design Overview

»Relaxed Monotonicity

« As a termination condition, stop a query’s execution timely.

»Unified Query Execution Engine

» support a wide range of queries on vector data in database system

Traversal window with w previous vectors

T OOO O

oGP 00

o}

e~ \Mg : Median distance of vectors to q
‘o in traversal window

q . o)
T ravar50| pat
o

Neighbor sphere of a target vector g with a radius Ry,
which contains E nearest vectors to g.

Ry

Output
(K)

Limit_K(Filter(Limit_K’(Sort(R3)))) -}

Limit
Filter(Limit_K'(Sort(Ry))) ——-------

Filter
Limit_K'(Sort(R1))

Index

Scan
Limit_K’'(Sort(Ry)) -=-------=------- '-TOpK Interface

Vector Index
Termination
Check

P Relaxed
Priority e
Queue Mor(lz?_'t:cr'l‘ icity

Index Traversal

Output
(K)
L~ Limit_K(Sort(Filter(R.)))

OrderBy
with Limit

Termination

Priority

Queue
************* Filter(R3)
Filter
****************** R,
Index
Scan
Relaxed
Monotonicity
Check
| __lterative Traversal R
2

Vector Index
Index Traversal

Designl - Relaxed Monotonicity

» The Formal Definition of Relaxed Monotonicity.

Traversal window with w previous vectors

5 Qo0
Ty dPod

@]

By \M,j Median distance of vectors to q
T g in traversal window
q) O

Trcwef50| path
O

Neighbor sphere of a target vector q with a radius R,
which contains E nearest vectors to g.

R, = Max(TopE ({Distance(q,v;)|j € [1,s —1]})).
M, = Median({Distance(q,v;)|i € [s—w+1,s]})

ds, M, > R, Vt > 5.

Designl - Relaxed Monotonicity /

Layer=1

» Four general components for mainstream vector indexes

* Index traversal to navigate the vector data-set;
« Termination check to detect query termination signal,

 Monotonicity check to determine if a query enters Phase 2;
 Priority queue for keeping K nearest vectors so far.

» Graph-based vector indexes, such as HNSW

« Sorted candidate queue, size that can abstract as E .
« Compare the unvisited neighbors with vector in the queue, the abstract w = 1.

»Partition-based vector indexes, such as FAISS IVFFlat
» Traverse over the centers, identify m closest clusters,
the abstract w = the number of total vectors in m clusters. E = K

graph-based

D

-t =
-
-‘.

partition-based

Decreasing characteristic radius

Design2 - Unified Query Execution Engine

» Traditional engine

« Database : Volcano model (iterator model).

« Vector Index: expose TopK interfaces only.

» Unified Query Execution Engine
* Modify the interface of vector indexes to
support iterative traversal.

* Modify the termination condition based
on relaxed monotonicity.
» Result Equivalence.

Output
(K)

Limit_K(Filter(Limit_K’(Sort(R1)))) -1

Limit
Filter(Limit_K’(Sort(R;))) ———------

Filter
Limit K’(Sort(R1))]

Index

Scan
Limit_K'(Sort(Ry)) -~ 1 TopK Interface

Vector Index

Termination
Check

A Relaxed
Priority ol
Queue Mo%cl)'nt:crll:mv

Index Traversal

Output
(K)
---- Limit_K{(Sort(Filter(R;)))
OrderBy
with Limit
Termination
Check

Priority
Queue

Relaxed
Monotonicity
Check

Iterative Traversal
Vector Index
Index Traversal

Evaluation

»Baseline systems
Milvus
Elasticsearch
PASE

PostgreSQL

»Vector similarity queries in SQL

e (I: Single-Vector TopkK.

e Q2: Single-Vector TopK + Numeric Filter.
e (3: Single-Vector TopK + String Filter.

o (O4: Multi-Column TopkK.

Q35: Multi-Column TopK + Numeric Filter.

Q6: Multi-Column TopK + String Filter.
Q7: Vector Range Filter.
Q8: Join.

Evaluation

Table 4: 8 Queries Result Overview (Latency: ms)

Q1:Single-Vector TopK

Q2:5ingle-Vector TopK+Numeric Filter

Q3:Single-Vector TopK+5tring Filter

Q4:Multi-Column TopK

System Latency Latency Latency Latency
Regall average median 99th Recall average median 99th Recall average median 99th Recall average median 99th
PostgreSQL 1 2980.1 3,021.7 313306 1 ILIOB.3 1.124.1 2,286.2 | 43222 35293 9953.0 | 5.610.0 5.604.7 5769.8
PASE 0.9949 4.8 35 5.1 0.9987 293 287 61.7 0.9982 132 10.7 17.9 - - - -
Milvus 0.9949 9.4 9 12.7 09919 337 239 121.4 - - - - 0.9041 6.696.4 83493 9.209.0
Elasticsearch || 0.9949 43.1 41.8 48.9 0.5010 97.9 08.1 118.1 0.8378 79.9 o0.0 100.9 - - - -
VBase 0.9949 4.9 39 5.3 0.9989 1.7 6.3 517 0.9983 7.9 6.7 10.4 | 0.9696 19.8 18.4 46.4
Q5:Multi-Column TopK+Numeric Filter | Q6:Multi-Column TopK+String Filter Q7:Vector Range Filter Q8:Join
System Latenc Latency Latenc Latency
! Regall average n‘mm:lialj;r 99th Recall average median 9ath Recall average rn-:cli-.snrj;r 99th Recall average median 99th
PostgreSQL 1 1,1929 12344 23436 1 6,543.2 59963 16,734.6 | 82449 82126 806416 1 129.051,2739 -
PASE - - - - - - - - - - - -
Milvus 0.9691 | 12 63? 9 5 EFI-.Ir 4 36, ERT 9 - - - - - - - - - -
Elasticsearch - - - - - - - - - - - - -
VBase 0.9805 35.8 24.9 160.7 0.9626 21.6 183 6d.8 0.9840 10.8 22 168.9 | 0.9992 16,335.9 -1 -1

»Compared to existing systems, VBase significantly improves the average

latency, median latency, and tail latency of queries

12

Conclusion

Similarity Search and
Relational Queries

—

—_—

—

Index

Execution

Engine

Elements

A

Structure

Monotonicity

] Volcano Model

—

 TopK interface

Relaxed
Monotonicity

Unified Query
Execution Engine

	幻灯片 1: VBASE: Unifying Online Vector Similarity Search and Relational Queries via Relaxed Monotonicity
	幻灯片 2: Background – Vector Search
	幻灯片 3: Background – Index of Database or ANNS System
	幻灯片 4: Background – Database System + ANNS
	幻灯片 5: Problem
	幻灯片 6: Motivation
	幻灯片 7: Design Overview
	幻灯片 8: Design1 - Relaxed Monotonicity
	幻灯片 9: Design1 - Relaxed Monotonicity
	幻灯片 10: Design2 - Unified Query Execution Engine
	幻灯片 11: Evaluation
	幻灯片 12: Evaluation
	幻灯片 13: Conclusion

