VBASE: Unifying Online Vector Similarity Search and Relational Queries via Relaxed Monotonicity

OSDI '23

Background – Vector Search

➤Vector search

• Find K nearest vectors in a dataset.

High-dimension vector

- Deep learning maps data into **high-dimension vectors** and achieve complex semantic analysis through similar queries of high-dimensional vectors.
- Queries on high-dimensional vectors become the cornerstone for many important **online** services.

Problem of online high-dimension vector search services

- Strict latency conflicts with the inherently high cost of exact search algorithm.
- Force users settle on approximate query results on high-dimensional vectors.
- Approximate Nearest Neighbor Search ANNS
 - Find K most similar vectors in a dataset, **Top-K**.
 - Sacrifice search accuracy for lower latency.

Background – Index of Database or ANNS System

➢Index of database system

- Elements in indexes are scalars.
- Use **monotonic** index like B-tree, B+-tree and more.
- Traverse the data-set guided by the index monotonically along a certain direction.

➢Index of ANNS system

- Elements in indexes are vectors.
- Index are often organized as a graph or cluster-based irreular structure.
- Traversing such vector indexes does not guarantee a strict monotonic order.

Background – Database System + ANNS

➤Top K search with filter conditions

• Find the most similar K cups for less than ¥100

Existing database systems that supports ANNS

- First, set up a **tentative** index by using *TopK* interface of ANNS system.
- Second, check the prices of K products in the index and filter out x products that meet the price below ¥ 100.

Problem

> It is difficult to predict the **right size of** K` for the tentative index.

- How to ensure K x = K?
- choosing a very large K` or perform trial-and-error with different sizes of K`.
- Both methods can lead to excessive data access and computations.

Motivation

>Well-designed vector indexes include a **two-phase** traversal pattern.

- Phase 1: approach the target vector region approximately in spite of large oscillations.
- Phase 2: stabilize and steadily departs from the target vector region in an approximate way.

Design Overview

Relaxed Monotonicity

• As a termination condition, stop a query's execution timely.

Unified Query Execution Engine

• support a wide range of queries on vector data in database system

Neighbor sphere of a target vector q with a radius R_q , which contains E nearest vectors to q.

Design1 - Relaxed Monotonicity

➤The Formal Definition of Relaxed Monotonicity.

Neighbor sphere of a target vector q with a radius R_q , which contains E nearest vectors to q.

Design1 - Relaxed Monotonicity

Four general components for mainstream vector indexes

- Index traversal to navigate the vector data-set;
- Termination check to detect query termination signal;
- Monotonicity check to determine if a query enters Phase 2;
- Priority queue for keeping K nearest vectors so far.
- ➢Graph-based vector indexes, such as HNSW
 - Sorted candidate queue, size that can abstract as E.
 - Compare the unvisited neighbors with vector in the queue, the abstract w = 1.
- ➢Partition-based vector indexes, such as FAISS IVFFlat
 - Traverse over the centers, identify m closest clusters, the abstract w = the number of total vectors in m clusters. E = K

partition-based

Design2 - Unified Query Execution Engine

Traditional engine

- Database : Volcano model (iterator model).
- Vector Index: expose *TopK* interfaces only.

Unified Query Execution Engine

- Modify the interface of vector indexes to support iterative traversal.
- Modify the termination condition based on relaxed monotonicity.
- Result Equivalence.

Evaluation

➤Baseline systems

- Milvus
- Elasticsearch
- PASE
- PostgreSQL

Vector similarity queries in SQL

- Q1: Single-Vector TopK.
- Q2: Single-Vector TopK + Numeric Filter.
- Q3: Single-Vector TopK + String Filter.
- Q4: Multi-Column TopK.
- Q5: Multi-Column TopK + Numeric Filter.
- Q6: Multi-Column TopK + String Filter.
- Q7: Vector Range Filter.
- *Q8: Join.*

Evaluation

System	Q1:Single-Vector TopK				Q2:Single-Vector TopK+Numeric Filter				Q3:Single-Vector TopK+String Filter				Q4:Multi-Column TopK			
	Recall	Latency			Recall	Latency			Recall	Latency			Recall	Latency		
		average	median	99th	Recall	average	median	99th	Recan	average	median	99th	Recall	average	median	99th
PostgreSQL	1	2,980.1	3,021.7	3,133.6	1	1,108.3	1,124.1	2,286.2	1	4,322.2	3529.3	9,953.0	1	5,610.0	5,604.7	5,769.8
PASE	0.9949	4.8	3.5	5.1	0.9987	29.3	28.7	61.7	0.9982	13.2	10.7	17.9	-	-	-	-
Milvus	0.9949	9.4	9	12.7	0.9919	33.7	23.9	121.4	-	-	-	-	0.9041	6,696.4	8,349.3	9,299.0
Elasticsearch	0.9949	43.1	41.8	48.9	0.5010	97.9	98.1	118.1	0.8378	79.9	90.0	100.9	-	-	-	-
VBase	0.9949	4.9	3.9	5.3	0.9989	11.7	6.3	51.7	0.9983	7.9	6.7	10.4	0.9696	19.8	18.4	46.4
	Q5:Mult	ti-Column T	opK+Num	eric Filter	Q6:Mu	lti-Column	TopK+Str	ing Filter	(Q7:Vector I	Range Filte	r		Q8:Joi	n	
System	Q5:Mult	i-Column T	CopK+Num Latency	eric Filter	Q6:Mu	lti-Column	TopK+Str Latency	ing Filter	(Recall	Q7:Vector I	Range Filte Latency	r	Recall	Q8:Joi L	n atency	
System	Q5:Mult Recall	i-Column T average	CopK+Num Latency median	eric Filter 99th	Q6:Mul Recall	lti-Column average	TopK+Str Latency median	ing Filter 99th	Recall	Q7:Vector I average	Range Filte Latency median	er 99th	Recall	Q8:Joi L average	n atency median	99th
System PostgreSQL	Q5:Mult Recall	i-Column T average 1,192.9	CopK+Num Latency median 1,234.4	99th 2,343.6	Q6:Mul Recall	average 6,543.2	TopK+Str Latency median 5,996.3	99th 16,734.6	Recall	27:Vector I average 8,244.9	Range Filte Latency median 8,212.6	er 99th 8,641.6	Recall	Q8:Joi L average 129,051,273.9	n atency median -	99th
System PostgreSQL PASE	Q5:Mult Recall	i-Column T average 1,192.9	CopK+Num Latency median 1,234.4	99th 2,343.6	Q6:Mul Recall	average 6,543.2	TopK+Str Latency median 5,996.3	99th 16,734.6	Recall	27:Vector I average 8,244.9 -	Range Filte Latency median 8,212.6	99th 8,641.6	Recall	Q8:Joi L average 129,051,273.9	n atency median - -	99th - -
System PostgreSQL PASE Milvus	Q5:Mult Recall - 0.9691	i-Column 7 average 1,192.9 - 12,637.9	TopK+Num Latency median 1,234.4 - 5,617.4	99th 2,343.6 - 36,887.9	Q6:Mu Recall 1 -	tti-Column average 6,543.2 - -	TopK+Str Latency median 5,996.3	99th 16,734.6	Recall 1 -	Q7:Vector I average 8,244.9 -	Range Filte Latency median 8,212.6	99th 8,641.6 -	Recall	Q8:Joi L average 129,051,273.9 -	n atency median - - -	99th - -
System PostgreSQL PASE Milvus Elasticsearch	Q5:Mult Recall - 0.9691 -	i-Column 7 average 1,192.9 - 12,637.9	TopK+Num Latency median 1,234.4 - 5,617.4	99th 2,343.6 - 36,887.9	Q6:Mu Recall - -	tti-Column average 6,543.2 - - -	TopK+Str Latency median 5,996.3 - -	99th 16,734.6 - -	Recall	27:Vector I average 8,244.9 - - -	Range Filte Latency median 8,212.6 - -	99th 8,641.6 - -	Recall	Q8:Joi L average 129,051,273.9 - - -	n median - - - -	99th - - -

Table 4: 8 Queries Result Overview (Latency: ms)

Compared to existing systems, VBase significantly improves the average latency, median latency, and tail latency of queries

Conclusion

