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Background — Vector Search

»\Vector search
* Find K nearest vectors in a dataset.

»High-dimension vector

« Deep learning maps data into high-dimension vectors and achieve complex semantic
analysis through similar queries of high-dimensional vectors.

* Queries on high-dimensional vectors become the cornerstone for many important online
services.

»Problem of online high-dimension vector search services
« Strict latency conflicts with the inherently high cost of exact search algorithm.
» Force users settle on approximate query results on high-dimensional vectors.

»Approximate Nearest Neighbor Search - ANNS
» Find K most similar vectors in a dataset, Top-K.
« Sacrifice search accuracy for lower latency.



Background — Index of Database or ANNS System

»Index of database system
« Elements in indexes are scalars.
« Use monotonic index like B-tree, B+-tree and more.
» Traverse the data-set guided by the index monotonically along a certain direction.

»Index of ANNS system

» Elements in indexes are vectors.
* Index are often organized as a graph or cluster-based irreular structure.
» Traversing such vector indexes does not guarantee a strict monotonic order.



Background — Database System + ANNS

%4
»Top K search with filter conditions \
» Find the most similar K cups for less than ¥ 100 ) \
»EXisting database systems that supports ANNS (Y1000 <)
 First, set up a tentative index by using TopK interface of ANNS system. ‘ ontent e

« Second, check the prices of K products in the index and filter out x
products that meet the price below ¥ 100.
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Problem

>t is difficult to predict the right size of K™ for the tentative index.
« Howtoensure K —x =K ?
» choosing a very large K or perform trial-and-error with different sizes of K.
» Both methods can lead to excessive data access and computations.
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Motivation

»Well-designed vector indexes include a two-phase traversal pattern.
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Figure 1: Traversal patterns of two vector indices.



Design Overview

»Relaxed Monotonicity

« As a termination condition, stop a query’s execution timely.

»Unified Query Execution Engine

» support a wide range of queries on vector data in database system
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Designl - Relaxed Monotonicity

» The Formal Definition of Relaxed Monotonicity.
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R, = Max(TopE ({Distance(q,v;)|j € [1,s —1]})).
M, = Median({Distance(q,v;)|i € [s—w+1,s]})
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Designl - Relaxed Monotonicity /

Layer=1

» Four general components for mainstream vector indexes

* Index traversal to navigate the vector data-set;
« Termination check to detect query termination signal,

 Monotonicity check to determine if a query enters Phase 2;
 Priority queue for keeping K nearest vectors so far.

» Graph-based vector indexes, such as HNSW

« Sorted candidate queue, size that can abstract as E .
« Compare the unvisited neighbors with vector in the queue, the abstract w = 1.

»Partition-based vector indexes, such as FAISS IVFFlat
» Traverse over the centers, identify m closest clusters,
the abstract w = the number of total vectors in m clusters. E = K
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Design2 - Unified Query Execution Engine

» Traditional engine

« Database : Volcano model (iterator model).

« Vector Index: expose TopK interfaces only.

» Unified Query Execution Engine
* Modify the interface of vector indexes to
support iterative traversal.

* Modify the termination condition based
on relaxed monotonicity.
» Result Equivalence.
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Evaluation

»Baseline systems
Milvus
Elasticsearch
PASE

PostgreSQL

»Vector similarity queries in SQL

e (I: Single-Vector TopkK.

e Q2: Single-Vector TopK + Numeric Filter.
e (3: Single-Vector TopK + String Filter.

o (O4: Multi-Column TopkK.

Q35: Multi-Column TopK + Numeric Filter.

Q6: Multi-Column TopK + String Filter.
Q7: Vector Range Filter.
Q8: Join.



Evaluation

Table 4: 8 Queries Result Overview (Latency: ms)

Q1:Single-Vector TopK

Q2:5ingle-Vector TopK+Numeric Filter

Q3:Single-Vector TopK+5tring Filter

Q4:Multi-Column TopK

System Latency Latency Latency Latency
Regall average median 99th Recall average median 99th Recall average median 99th Recall average median 99th
PostgreSQL 1 2980.1  3,021.7 313306 1 ILIOB.3  1.124.1  2,286.2 | 43222 35293 9953.0 | 5.610.0 5.604.7 5769.8
PASE 0.9949 4.8 35 5.1 0.9987 293 287 61.7 0.9982 132 10.7 17.9 - - - -
Milvus 0.9949 9.4 9 12.7 09919 337 239 121.4 - - - - 0.9041 6.696.4 83493  9.209.0
Elasticsearch || 0.9949 43.1 41.8 48.9 0.5010 97.9 08.1 118.1 0.8378 79.9 o0.0 100.9 - - - -
VBase 0.9949 4.9 39 5.3 0.9989 1.7 6.3 517 0.9983 7.9 6.7 10.4 | 0.9696 19.8 18.4 46.4
Q5:Multi-Column TopK+Numeric Filter | Q6:Multi-Column TopK+String Filter Q7:Vector Range Filter Q8:Join
System Latenc Latency Latenc Latency
! Regall average n‘mm:lialj;r 99th Recall average median 9ath Recall average rn-:cli-.snrj;r 99th Recall average median 99th
PostgreSQL 1 1,1929 12344 23436 1 6,543.2 59963 16,734.6 | 82449 82126 806416 1 129.051,2739 -
PASE - - - - - - - - - - - -
Milvus 0.9691 | 12 63? 9 5 EFI-.Ir 4 36, ERT 9 - - - - - - - - - -
Elasticsearch - - - - - - - - - - - - -
VBase 0.9805 35.8 24.9 160.7 0.9626 21.6 183 6d.8 0.9840 10.8 22 168.9 | 0.9992 16,335.9 -1 -1

»Compared to existing systems, VBase significantly improves the average

latency, median latency, and tail latency of queries
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