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Background: AWS Lambda

* Provide your code or image, we run it as an event when

things happen
* No provisioning or managing servers
* Scale up in milliseconds in response to traffic
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Background: AWS Lambda

* Container: an isolated environment for your code.
sharing host operating system

e AWS Lambda: each container or code runs in one MicroVIV
customer code(250 MB) or container image (10 GB)
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Problem

* Adding container support to AWS Lambda without regressing on
cold-start time

 Meeting Lambda’s goals of rapid scale, high request rate and low start-
uptimes
 The core challenge is simply one of data movement.
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Main idea

* Sparsity —block-level demand loading

Most container images contain a lot of files, but only 6.4% of container data is
needed at startup.

e Commonality —deduplication
Many popular container images are based on common base layers

* Cacheability —Tiered Caching
Most of workloads tend to be driven by a smaller number of images



Architecture

 Worker Manager: Assignment Service

forward the request to a worker or start a new worker

e Worker:

Lots of independent isolated

environments to run customer code
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Designl: Block-Level Loading

* Collapse the container image into a block device image
* flattening each tarball to create a single ext4 filesystem
* overlay a stack of layers using overlayfs.

* Build a filesystem that knows about our chunked container format
* reads by fetching just the chunks of the container it needs
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Design2: Deduplication

* Deduplication-after-encryption.

 Each Lambda worker host to only being able to access the data that
have been sent to it.
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Do not encrypt the entire manifest. Only the chunk key table is encrypted.
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Design2: Convergent encryption

* The same chunk is encrypted by same key.
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Design2: Garbage Collection

* Removing data from the backing store when it is no longer actively

referenced.

* Root: a self-contained manifest and chunk namespace
 While R1 is retired, any manifest that is still referenced in R1 is migrated to R2.

* |n expired state, data is still allowed to be read, but any attempt to access
data leads to an alarm.
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Design2: Garbage Collection

* Removing data from the backing store when it is no longer actively
referenced.
* Root: a self-contained manifest and chunk namespace
 While R1 is retired, any manifest that is still referenced in R1 is migrated to R2.

* |n expired state, data is still allowed to be read, but any attempt to access
data leads to an alarm.
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Design3: Tiered Caching

* Three cache tiers
e S3 cache: origin tier that stored all chunks.
* Worker Local Cache: caches chunks that are frequently used on a worker.

* AZ-level cache : caches chunks that are frequently used on workers in
availability'zone. Worker Host
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Design3: Tiered Caching

* Read chunk data: reading directly from the local cache firstly
* |f not exists in local cache, the chunk is fetched from the AZ-level cache.

* Write data to block overlay

e Using a bitmap to check if chunk written to overla
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Design3: Tiered Caching

* AZ-level cache: a fairly standard design of distributed cache.
* An in-memory tier for hot chunks and a flash tier for colder chunks.
 Evictiontion is LRU-k  -a scan-resistant LRU

e Using a consistent hashing scheme to distribute chunks.
* Erasure coding to Worker Host
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Design3: consistent hashing

* Map the chunk to the hash ring
* Map the server’s id to the hash ring

 The first server encountered in a counterclockwise direction from the
location of chunk is the server corresponding to the chunk.
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Design3: Erasure coding

* A single slow cache server can cause wide spread impact because of
congestion in the network, or by partial software failure.

* Erasure coding: Any k of the (k+r) units are sufficient to decode origin
full data.
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Evaluation
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 The majority of functions of all sizes are heavily deduped.
* GET latency is very consistent, with a median of below 50ps.
e PUT latency is less consistent than GET, but performance is still excellént



Evaluation
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* These three cache tiers are efficient
* A mode below 100us which represent local cache hits,
a mode around 2.75ms which represent L2 hits
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Summary
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