
On-demand Container Loading in AWS
Lambda

1

ATC’ 23

Background: AWS Lambda

</>

Make api call
AWS Lambda

Lambda is
triggered Amazon DB

Run code

• Provide your code or image, we run it as an event when
things happen

• No provisioning or managing servers
• Scale up in milliseconds in response to traffic

2

Background: AWS Lambda

• Container: an isolated environment for your code.
sharing host operating system

• AWS Lambda: each container or code runs in one MicroVM
customer code(250 MB) or container image (10 GB)

Docker Container

AWS Lambda

3

Problem

• Adding container support to AWS Lambda without regressing on
cold-start time
• Meeting Lambda’s goals of rapid scale, high request rate and low start-

uptimes

• The core challenge is simply one of data movement.

4

Cold start Warm start

First invoke latecy

Main idea

• Sparsity —block-level demand loading
Most container images contain a lot of files, but only 6.4% of container data is
needed at startup.

• Commonality —deduplication
Many popular container images are based on common base layers

• Cacheability —Tiered Caching
Most of workloads tend to be driven by a smaller number of images

5

Architecture

• Worker Manager: Assignment Service
forward the request to a worker or start a new worker

• Worker:
Lots of independent isolated

environments to run customer code

6Invoke path High-level system architecture

• Collapse the container image into a block device image
• flattening each tarball to create a single ext4 filesystem

• overlay a stack of layers using overlayfs.

• Build a filesystem that knows about our chunked container format
• reads by fetching just the chunks of the container it needs

Design1: Block-Level Loading

7

Block level chunking loading chunks on demand

Unused
chunks

Container image

Design2: Deduplication

8

• Deduplication-after-encryption.

• Each Lambda worker host to only being able to access the data that
have been sent to it.

Do not encrypt the entire manifest. Only the chunk key table is encrypted.

chunk1

chunk2

chunk2

chunk3

chunk1'

chunk2'

chunk2'

chunk3'

chunk1'

chunk2'

chunk3'

Manifest 1
Chunk1 -> 0xaa
Chunk2 -> 0xab

Manifest 2
Chunk2 -> 0xab
Chunk3 -> 0xbb

dedup

Not upolad

Upolad

existed

S3

AWS Key
Management Service

customer key

Customer1

Customer2 encrypt

encrypt

Design2: Convergent encryption

9

• The same chunk is encrypted by same key.

• Using varying salt in the key derivation step to limit Blast Radius.
Unique per-chunk key

＋

＋

Hash(

Hash(

)

)

K347

K824

Design2: Garbage Collection

10

• Removing data from the backing store when it is no longer actively
referenced.

• Root: a self-contained manifest and chunk namespace
• While R1 is retired, any manifest that is still referenced in R1 is migrated to R2.

• In expired state, data is still allowed to be read, but any attempt to access
data leads to an alarm.

Design2: Garbage Collection

11

• Removing data from the backing store when it is no longer actively
referenced.

• Root: a self-contained manifest and chunk namespace
• While R1 is retired, any manifest that is still referenced in R1 is migrated to R2.

• In expired state, data is still allowed to be read, but any attempt to access
data leads to an alarm.

Mainfest 1

Mainfest 2

chunk2->0xab
chunk3->0xac

Chunk4 -> 0xad

chunk1

chunk2

chunk3

chunk4

R1 active

Mainfest 1

Mainfest 2

chunk3->0xac

chunk4->0xad

R2 activeretired

chunk3 -> 0xac

chunk1->0xaa delete

delete

data

chunk3

chunk4

data

chunk5

chunk5->0xaa

Design3: Tiered Caching

12

• Three cache tiers
• S3 cache: origin tier that stored all chunks.

• Worker Local Cache: caches chunks that are frequently used on a worker.

• AZ-level cache : caches chunks that are frequently used on workers in
availability-zone.

Per-function resources

Three cache tiers

S3

originReads
only

Design3: Tiered Caching

13

• Read chunk data: reading directly from the local cache firstly
• If not exists in local cache, the chunk is fetched from the AZ-level cache.

• Write data to block overlay
• Using a bitmap to check if chunk written to overlay

Write to overlay

S3

originReads
only

Design3: Tiered Caching

14

• AZ-level cache: a fairly standard design of distributed cache.
• An in-memory tier for hot chunks and a flash tier for colder chunks.

• Evictiontion is LRU-k -a scan-resistant LRU

• Using a consistent hashing scheme to distribute chunks.

• Erasure coding to

down tail latency.

Per-function resources

Three cache tiers

S3

originReads
only

Design3: consistent hashing

15

• Map the chunk to the hash ring

• Map the server’s id to the hash ring

• The first server encountered in a counterclockwise direction from the
location of chunk is the server corresponding to the chunk.

F

E

B

D

A

C

server1

server2

server3

server4

Design3: Erasure coding

16

• A single slow cache server can cause wide spread impact because of
congestion in the network, or by partial software failure.

• Erasure coding: Any k of the (k+r) units are sufficient to decode origin
full data.

origin chunk

Theorem: k points can determine a curve corresponding to a polynomial of
order k-1

Evaluation

17

• The majority of functions of all sizes are heavily deduped.
• GET latency is very consistent, with a median of below 50μs.
• PUT latency is less consistent than GET, but performance is still excellent

deduplication effectiveness Server-side measured latency ofthe L2 cache server

Evaluation

18

• These three cache tiers are efficient
• A mode below 100μs which represent local cache hits,

a mode around 2.75ms which represent L2 hits

One week of hit rates on each of the cache tiers Empirical CDF of end-to-end read latency
observed at the local agent

Summary

19

AWS Lambda

Reduce
data movement

Sparsity

Container
image

Commonality

Cacheability

block-level demand loading

deduplication

Tiered Caching

Convergent encryption

Garbage Collection

consistent hashing

Erasure coding

	幻灯片 1: On-demand Container Loading in AWS Lambda
	幻灯片 2: Background: AWS Lambda
	幻灯片 3: Background: AWS Lambda
	幻灯片 4: Problem
	幻灯片 5: Main idea
	幻灯片 6: Architecture
	幻灯片 7: Design1: Block-Level Loading
	幻灯片 8: Design2: Deduplication
	幻灯片 9: Design2: Convergent encryption
	幻灯片 10: Design2: Garbage Collection
	幻灯片 11: Design2: Garbage Collection
	幻灯片 12: Design3: Tiered Caching
	幻灯片 13: Design3: Tiered Caching
	幻灯片 14: Design3: Tiered Caching
	幻灯片 15: Design3: consistent hashing
	幻灯片 16: Design3: Erasure coding
	幻灯片 17: Evaluation
	幻灯片 18: Evaluation
	幻灯片 19: Summary

