On-demand Container Loading in AWS
Lambda

ATC’ 23

Background: AWS Lambda

* Provide your code or image, we run it as an event when

things happen
* No provisioning or managing servers
* Scale up in milliseconds in response to traffic

__o
o) - '
w- Lambda is A —

triggered AWS Lambda Amazon DB

Run code

Make api call

Background: AWS Lambda

* Container: an isolated environment for your code.
sharing host operating system

e AWS Lambda: each container or code runs in one MicroVIV
customer code(250 MB) or container image (10 GB)

App 2

Bins/Libs App 3

Docker Container
Blns/les Docker

Docker Engine AWS Lambda Guest OS
Operating System (OS) ‘ Hypervisor *

Server (Host)

Server (Host)

Problem

* Adding container support to AWS Lambda without regressing on
cold-start time

 Meeting Lambda’s goals of rapid scale, high request rate and low start-
uptimes
 The core challenge is simply one of data movement.

Cold start Warrh start
¢ n N »)
L)
h 4

First invoke latecy

Cold start!
4

Frequency

Latency

Main idea

* Sparsity —block-level demand loading

Most container images contain a lot of files, but only 6.4% of container data is
needed at startup.

e Commonality —deduplication
Many popular container images are based on common base layers

* Cacheability —Tiered Caching
Most of workloads tend to be driven by a smaller number of images

Architecture

 Worker Manager: Assignment Service

forward the request to a worker or start a new worker

e Worker:

Lots of independent isolated

environments to run customer code

Frontend

Worker
Manager

AN

Function

Metadata

Workers

Invoke path

Scale: per
new function

Container
Registry

v

Deterministic
Flatten

4

Key Store
(KMS)

4 T

77 Keys — Chunks

High-level system architecture

Scale: per
invoke

Distributed
Cache

L

Lambda
Worker

Chunk Qrigin
(S3)

= = Container
Images

Designl: Block-Level Loading

* Collapse the container image into a block device image
* flattening each tarball to create a single ext4 filesystem
* overlay a stack of layers using overlayfs.

* Build a filesystem that knows about our chunked container format
* reads by fetching just the chunks of the container it needs

\

Unused
chunks

[6-7]
Chunk3

\[61

Ch;nk Chunk3

Container image Block level chunking loading chunks on demand

Design2: Deduplication

* Deduplication-after-encryption.

 Each Lambda worker host to only being able to access the data that
have been sent to it.

Customerl

Customer?2

chunk1

chunk?2

chunk?2

encrypt

—

encrypt

chunk3

iE i

e e e o e o o e e o

e e e o e o o e e o

Upolad
_.&,

existed l

Not upolad

S3

chunkl'

chunk?2'

chunk3'

Do not encrypt the entire manifest. Only the chunk key table is encrypted.

Manifest 1
Chunkl -> Oxaa
Chunk2 -> Oxab

customer

[

AWS Key

Management Servic

\ 4

Manifest 2
Chunk2 -> Oxab
Chunk3 -> Oxbb

key

;_

Design2: Convergent encryption

* The same chunk is encrypted by same key.

a
| »

> O

Unique per-chunk key
e Using varying salt in the key derivation step to limit Blast Radius.

Hash(|G| + | ot |) - O K347
Hash(- ¥ -) - O K824

Design2: Garbage Collection

* Removing data from the backing store when it is no longer actively

referenced.

* Root: a self-contained manifest and chunk namespace
 While R1 is retired, any manifest that is still referenced in R1 is migrated to R2.

* |n expired state, data is still allowed to be read, but any attempt to access
data leads to an alarm.

active
read &
write

retired
read
only

—

expired
alarm on
access

—» deleted

.
.
»

.-"Copy active data

active

—

retired

—

expired

—» deleted

10

Design2: Garbage Collection

* Removing data from the backing store when it is no longer actively
referenced.
* Root: a self-contained manifest and chunk namespace
 While R1 is retired, any manifest that is still referenced in R1 is migrated to R2.

* |n expired state, data is still allowed to be read, but any attempt to access
data leads to an alarm.

R1 eectine R2 active
Mainfest 1 data Mainfest 1 data
chunk1->0xaa M delete chunk3->0xac
chunk2->0xab
chunk3->0xac chunk2 delete chunk5->0xaa
k2
Mainfest 2 chunk3 Mainfest 2
chunk3 -> Oxac S— chunk4->0xad chunks
Chunk4 -> Oxad chu—nk4)

Design3: Tiered Caching

* Three cache tiers
e S3 cache: origin tier that stored all chunks.
* Worker Local Cache: caches chunks that are frequently used on a worker.

* AZ-level cache : caches chunks that are frequently used on workers in
availability'zone. Worker Host

MicroVM
Sandbox

ext4 filesystem

T Write
virtio driver b Overlay
f—

virtio T

‘ Keys

—

_...
Writas

. [
Per-function resources,

I
.

Design3: Tiered Caching

* Read chunk data: reading directly from the local cache firstly
* |f not exists in local cache, the chunk is fetched from the AZ-level cache.

* Write data to block overlay

e Using a bitmap to check if chunk written to overla
Worker Host

MicroVM
Sandbox

ext4 filesystem

KVM virtio driver

Design3: Tiered Caching

* AZ-level cache: a fairly standard design of distributed cache.
* An in-memory tier for hot chunks and a flash tier for colder chunks.
 Evictiontion is LRU-k -a scan-resistant LRU

e Using a consistent hashing scheme to distribute chunks.
* Erasure coding to Worker Host

down tail latency. MicroVM
Sandbox

ext4 filesystem

I Write
virtio driver e Overlay
4—

virtio
=
Writes

Design3: consistent hashing

* Map the chunk to the hash ring
* Map the server’s id to the hash ring

 The first server encountered in a counterclockwise direction from the
location of chunk is the server corresponding to the chunk.

(A

15

Design3: Erasure coding

* A single slow cache server can cause wide spread impact because of
congestion in the network, or by partial software failure.

* Erasure coding: Any k of the (k+r) units are sufficient to decode origin
full data.

origin chunk

data units parity units data units parity units
1 | 1 | P k —_ 5
| V1 \ | \ 1
di d2 |d3| d4| d5 p1 p2 p3 p4 di |d2 |d3| d4 d5 p1 p2 p3 p4 o [= 4
Read Read

Theorem: k points can determine a curve corresponding to a polynomial of
order k-1 16

Evaluation

1.00 -
1.00 -
i >
@ 0.75-
20.75- S
s | :
0.50 -
© 0.50- E
E ©
£ >
3 € 0.25-
0.25 =
O { 3
0.00 — 0.00 -
0 25 50 75 100 0 100 200 300
% unique chunks Time (us)
quartile — remainder — top — GET — PUT
deduplication effectiveness Server-side measured latency ofthe L2 cache server

 The majority of functions of all sizes are heavily deduped.
* GET latency is very consistent, with a median of below 50ps.
e PUT latency is less consistent than GET, but performance is still excellént

Evaluation

1.00 -
80 - ﬁ

2 0.75
c
60
2 3
2 2 050-
O 40 ©
o >
< =
2. O 0.25-
0- T 0.00 -
L1 L2 L3 0 1 2 3 4 5
Time (ms)
One week of hit rates on each of the cache tiers Empirical CDF of end-to-end read latency

observed at the local agent

* These three cache tiers are efficient
* A mode below 100us which represent local cache hits,
a mode around 2.75ms which represent L2 hits

18

Summary

AWS Lambda
Confainer
image .
—> Sparsity — block-level demand loading
Reduce Convergent encryption
data movement » Commonality — deduplication—[:
Garbage Collection

— Cacheability — Tiered Caching —|:> Erasure coding

consistent hashing

19

	幻灯片 1: On-demand Container Loading in AWS Lambda
	幻灯片 2: Background: AWS Lambda
	幻灯片 3: Background: AWS Lambda
	幻灯片 4: Problem
	幻灯片 5: Main idea
	幻灯片 6: Architecture
	幻灯片 7: Design1: Block-Level Loading
	幻灯片 8: Design2: Deduplication
	幻灯片 9: Design2: Convergent encryption
	幻灯片 10: Design2: Garbage Collection
	幻灯片 11: Design2: Garbage Collection
	幻灯片 12: Design3: Tiered Caching
	幻灯片 13: Design3: Tiered Caching
	幻灯片 14: Design3: Tiered Caching
	幻灯片 15: Design3: consistent hashing
	幻灯片 16: Design3: Erasure coding
	幻灯片 17: Evaluation
	幻灯片 18: Evaluation
	幻灯片 19: Summary

